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ABSTRACT 
DEVELOPMENT OF AN AUTOMATED DETECTION SYSTEM FOR NITRITE IN 

AQUATIC ENVIRONMENTS 
 
 

by  
 

Tim Schierenbeck 
 
 

The University of Wisconsin-Milwaukee, 2016 
Under the Supervision of Professor Matthew C. Smith  

 
 
 
 

The main objective of the project is to develop an automated nitrite sensor for use in 

aquatic environments, and more specifically for use in recirculating aquaculture systems (RAS), 

where monitoring can help sustain a controlled environment, protect against nitrite intoxication, 

and promote fish health.  Detecting nitrite manually with semi-quantitative colorimetric test kits, 

although inexpensive and simple, is prone to inter-user variability and poor sensitivity.  An 

automated nitrite sensor has potential to provide higher resolution measurements at both 

concentration and time scales and can serve as a research tool for the study of filtration systems 

essential in maintaining a healthy RAS environment.  

The questions driving the project are: How to build a device that can deliver satisfactory 

analytical merit (e.g., sensitivity, accuracy, precision), while maintaining reliable, inexpensive, 

and simple operation.  The research involves investigation into detection methods and state of 

the art instrumentation available for nitrite, production trends in chemical total analysis systems, 

and centers around larger questions surrounding invention and innovation.  The first steps 

towards such a device are benchtop prototyping of the detection and fluidic modules, their 

integration with wet chemistry, and the validation of the analytical process carried out by the 
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system.  The project approaches the objectives with a design that relies on commercially 

available components and consumables and is modular and adaptable for future possible 

configurations.   

To this end, the benchtop prototype was developed as an opto-fluidic system for 

automated colorimetric detection.  With the exception of two custom-built PVC adaptors, the 

entire system was built with off-the-shelf parts for around $1,000.   In addition to utilizing easily 

replaceable components, the system was tested using commercially available and pre-made 

reagents based on proven chemistry (Griess assay for nitrite).   Preliminary results suggest the 

analytical process is capable of detecting sub-micromolar nitrite concentrations (limit of 

detection equal to 0.18 µM) at appreciable precision, sensitivity, and accuracy in comparison to 

commercial instruments.  
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1. Chapter I 

A path to impact for autonomous field deployable chemical sensors: A case study of in situ 

nitrite sensors 

 

Abstract 

 

 

Natural freshwater systems have been severely affected and altered by excess loading of 

macronutrients (e.g., nitrogen and phosphorous) from fertilizers, fossil fuels, and human and 

livestock waste.  Impacts to drinking water quality, biogeochemical cycles, and aquatic 

ecosystems are estimated to incur costs of US$210 billion annually.  Automated sensing 

technologies offer potential to support research and resource management efforts by providing 

sample in/answer out measurement services and acquiring higher resolution data than currently 

supported by conventional sampling methods at a fraction of the cost.   

While research and development activities surrounding this technology have been 

ongoing for nearly four decades, automated field-deployable nutrient sensors (FDS) have not 

been widely implemented, practically adopted, or made accessible for the majority of users.  This 

paper reviews the trends, opportunities, and challenges in production and implementation of FDS 

from a perspective of innovation and impact.  We use nitrite sensors as a case study to 

characterize the user community and consumer needs, perform a content analysis on related 

publications, tabulate state-of-the-art examples and specifications, and discuss data life cycle 

considerations.  With further development of FDS through prototyping and testing in real-world 

applications, these tools can deliver information for protecting and restoring natural waters, 

enhancing process control for industrial operations and water treatment, and novel research 

insights. 
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1.1.   Introduction 

Intensifying anthropogenic activities are necessitating an increased environmental 

monitoring effort to obviate water resource-related crises. While analytical chemistry techniques 

and technologies have rapidly improved, the cost and logistics of collecting and analyzing water 

samples remains prohibitory to adequately capture the real-time distribution of contaminants and 

nutrients in natural, drinking, and crop-sustaining waters across meaningful spatial scales 

(Sequeira et al., 2002; Prien, 2007b).  To address this dilemma, a ‘Grand Challenge’ was posed 

to the environmental analytical chemistry community to develop capabilities to sample and 

monitoring air, water, and soil at higher frequency (Murray, 2010).  To meet this goal requires 

approaches that greatly lower per-sample and per-measurement costs while improving 

methodologies and techniques for remote measurements (Murray, 2010).   

 Chemical-sensing field deployable sensors (FDS) are systems that operate autonomously 

in situ and offer the potential to solve the Grand Challenge (Cleary et al., 2013).  A report for the 

United States’ National Oceanic and Atmospheric Administration (NOAA) surveyed regulatory, 

academic, and industrial user groups recommended that emphasis should be placed on 

developing FDS for nutrients along with standardized criteria and nomenclature to assess their 

effectiveness (Koeppen et al., 1978b).  Nearly forty years later, the idea of FDS and their 

integration into distributed sensing networks has increased in popularity and scope.  FDS have 

been regarded as the ‘the holy grail for environmental analysis’ (De Marco et al., 2007) because 

of their potential to provide a solution to under-sampling problems in oceanographic research 

(Johnson et al., 2007) and revolutionize our understanding of environmental processes (Hart and 

Martinez, 2006), analogous to the comparison of movies with still photography (Prien, 2007a).  

The appeal for such instrumentation is reflected by a market potential of $150 million by 2020 in 
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the United States alone (ACT, 2015), however the technologies remain poorly implemented or 

adopted in environmental analytical chemistry (Rios et al., 2012; Cogan et al., 2013b).   Current 

technological limitations and prohibitive costs hamper FDS inventions from becoming routinely 

and habitually used at a wide scale (ACT, 2014).   

To become truly innovative, FDS must offer economic value and become widely adopted 

beyond their inventors and initial adopters (Garcia and Calantone, 2002).   This process of 

transferring technology from research and development to commercialization and technological 

growth and maturity necessarily encounters uncertainties, risks, and consequences that must be 

overcome by developer, practitioner, and sponsor alike.   In addition to reaching a Technology 

Readiness Level (TRL) (NASA, 2012; Mowlem et al., 2008) where uncertainty is low enough 

for commercial firms to invest in the technology and produce it on a mass scale, a user 

community willing to adopt and implement the technology must also be established.  As 

developers improve technology and early adopters prove performance in real-world 

environments, market diffusion is more likely to spread (Moore, 2014).  For FDS that reach high 

technology readiness, the development of functioning, practical, and low-cost FDS remains a 

fundamental yet extremely challenging goal necessary to cross the technological chasm 

(Nightingale et al., 2015; Radu et al., 2013).  These concepts can be illustrated by overlaying 

elements of technology development such as the TRL scale and S-Curve of technological 

process with market-driven adoption behaviors (Figure 1).   
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Figure 1.  Technology readiness level and innovation. The process of invention (as given by 
TRL adapted from Mowlem et al., 2008) along the S-curve of Technological Process (solid line) 
coupled to the process of innovation (dashed lines), which comprises the entire cycle beginning 
with decision to undertake research followed by stages of development and commercialization 
along with market diffusion and finally the decision to adopt and implement (Rogers 1995).   
Together these processes iterate to advance a concept along a technological evolution scale (far 
left).   

 

This review uses nitrite as a case study for the development and implementation of FDS 

in aquatic environments, highlights progress towards achieving answers for the Grand Challenge 

and addresses the requirements and challenges ahead.   Nitrite has been selected as a parameter 

for evaluation for FDS because of its significance in aquatic environments and consequently its 

importance to environmental researchers and resource managers (Figure 2).   Nitrite is also a 

chemical parameter that can be combined with nitrate and other macronutrients for analysis in 

FDS.  We assess detection systems and state of the art instrumentation for nitrite as a proxy for 
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other spectrophotometric and electrochemical sensors, as the anion is subject to both forms of 

detection in situ.   

 

1.1.1. Significance of nitrite in aquatic environments  

As an intermediate compound in the overall nitrogen cycle, nitrite exists in aquatic 

environments at wide range of concentrations (Table 1), though most often at trace 

concentrations.  Subject to abiotic and biotic transformation through photochemical degradation, 

nitrification, denitrification, and annamox processes, nitrite is an intermediate species that if 

accumulated can have significant negative impacts at global scales for human, animal, 

ecosystem, and economic health.  Intensifying human activities (energy production, crop 

cultivation of legumes and rice, fertilizer and feed applications, human and animal waste, food 

preservatives) have more than doubled the amount of bioavailable nitrogen in the environment 

and increased the amount of nitrate and nitrite entering aquatic environments and water supplies 

(Wetzel, 2001).   Though monitoring observations are routinely measured as total nitrate and 

nitrite (NOx), there is an increasing desire to target nitrite specifically as we learn more about its 

role in physiological and environmental processes (Moorcroft et al., 2001).   

Nitrite is considered more toxic than nitrate (Dutt and Davis, 2002), and can be 

responsible for methemoglobinemia, a condition that reduces the oxygen carrying capacity of red 

blood cells.  This potentially fatal condition, along with nitrite’s role as a suspected carcinogen 

(Moorcroft et al. 2001; Miró et al., 2003) and indicator of fecal pollution, have warranted legal 

recognition of nitrates and nitrites through thresholds in drinking water set by institutions such as 

the World Health Organization (WHO) and the United States Environmental Protection Agency 

(EPA) (Table 1).  The risk for aquatic animals is even greater because of nitrite exposure at the 
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gill membrane (Kroupova et al., 2005), and necessitates continuous nitrite level regulation and 

monitoring in aquaculture operations (Table 1) especially in recirculating systems (Svobodova et 

al., 2005).  

Table 1:  Relevant ranges of nitrite in aquatic environments. 

Matrix Metric Nitrite Concentration Reference 
 
Drinking 
Water 

EPA National Standard 1 mg/L NO2-N (71.42 μM) EPA, 2016 
WHO Standard 3 mg/L NO2 (65.20 μM) WHO, 2011 
European Union Water Directive 
Standard 0.1 mg/L NO2 (2.17 μM) EU, 2015 

Natural 
Waters 

Geographic Area Approximate Range Lab Resolution 

Mowlem et 
al., 2008 

Surface Ocean 0.1 - 200 nM  
0.1 nM Deep Ocean 0.1 - 5 nM 

Estuarine 0.5 - 1.5 μM  
0.01 μM Coastal 0.1 - 2 μM 

 
 
 
Aquaculture 

Median 96 h 
LC50 
(Adjusted for 
20 ppm 
Chloride) 

Coldwater Species 4.6 - 9.4 mg/L NO2-N (0.33 - 0.67 mM) 
Lewis and 

Morris, 
1986 

Warmwater Species 6.4 - 144 mg/L NO2-N (0.46 - 10.28 mM) 

Other Families 9 < x <106 mg/L NO2-N (0.64 < x < 7.57 
mM) 

Preferred Range for Fish Culture 
<1 mg/L NO2 (21.7 μM) Buttner et 

al., 1993 <0.1 mg/L NO2 (2.17 μM) in soft water 
European Union 
Water Directive: 
Minimum Instrument 
Performance 
Characteristics 

Trueness (standard error) 10% of [NO2] 

EU, 2002 Precision (standard deviation) 10% of [NO2] 
Limit of Detection (5x 
Standard Deviation of Blank) 10% of [NO2] 

 

Nitrite concentration is also used to investigate algal community composition, microbial 

relationships, and nutrient stoichiometry and dynamics in natural waters, where it can range from 

sub-nanomolar to several micro-molar levels (Table 1).  Though it has received little monitoring 

attention relative to nitrate, accounting for nitrite uptake and release in aquatic ecosystems results 

in more accurate and unbiased models of primary productivity (Malerba et al., 2012).   

Collecting information on nitrite’s distribution and concentration can help solve unanswered 

questions surrounding our ever-evolving understanding of nitrite accumulation, microbial 

activity and production pathways (Santoro et al., 2013; Arrigo, 2005).   Consequently, 
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accumulating this knowledge with improved tools and applying it to models can help mitigate 

effects of nutrient loading and climate change on marine, estuarine, and freshwater populations 

(Ma et al., 2014).    

 

1.1.2. Nitrite FDS: Stakeholders and user community  

 Based upon a survey of the marine research community in the 1970’s, Koeppen et al. 

(1978b) reported to NOAA’s Office of Ocean Engineering a review of the state-of-the-art of 

marine instrumentations and their deficiencies.  Koeppen et al. organized data needs’ 

characteristics into six major categories, with the rationale that the first four category needs 

would dictate the requirements in the last two (Figure 2).  From an innovation perspective, 

categories one through four represent a market demand or ‘market pull’ for FDS, while five and 

six represent technology supply or technology push concepts.  Ultimately the authors 

recommended an emphasis on the development of automated and reliable in situ instrumentation 

for nutrients (Koeppen et al., 1978a).  Recent surveys conducted by the Alliance for Coastal 

Technologies (ACT, 2005; 2009) and the American University Center for Environmental Policy 

(2014) serve as updated assessments by examining user needs and priorities, currently available 

FDS technologies, and barriers to their development.  Together these surveys provide an 

informative overview of the characteristics of nutrient FDS users, applications, and needs (Figure 

2).  

 In Koeppen et al.’s survey, nitrates and nitrites ranked as the second and third 

highest-rated chemical parameters of interest (below only dissolved oxygen), and 

fifteenth/sixteenth out of ninety-seven other physical, chemical, biological, geological and 

meteorological parameters (Koeppen et al., 1978b).  The ACT surveys also found nitrates and 
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nitrites together leading all other nutrient parameters in regards to measurement frequency and 

interest (Figure 2).   

 Koeppen et al. (1978a) favored government users of FDS because of the sector’s 

power to formulate legislative mandates to which the industry and academic parties respond.  

The U.S. government, for instance, has budgeted over $3.5 billion spread among eleven agencies 

in 2016 for ocean-related information services (Sea Technology Buyer’s Guide, 2016).  

Operational, forecasting, regulatory, and monitoring operations were favored by Koeppen et al. 

(1978b) because of more immediate data needs compared to baseline and research applications.  

Monitoring and research applications of in situ nutrient data were the primary (>70%) interests 

of the ACT survey population, which was comprised mainly of respondents from academic or 

government backgrounds, as well as environmental non-profit organizations, a sector still in its 

infancy in 1978.  Less than 30% of ACT respondents planned on using data primarily for 

regulation, education, policy, or communication purposes (American University, 2014).   

 Affordable and smart FDS can provide means to create, monitor, and enforce nutrient 

load limits and regulations for pollution abatement and policies (ACT 2015; Moscetta et al., 

2009).  This is especially true at the interface of surface waters and the built environment, where 

complex ecosystems are particularly susceptible to anthropogenic, environmental, and 

hydrological influences.  Coastal waters, estuaries, lentic, and lotic systems act as bioreactors 

and climate change sentinels, are responsible for nutrient transformations, food web support, and 

water supply.  These geographic areas represent the majority of ACT respondents’ field 

operation locations, which can be characterized by their relatively high level of turbidity, 

biological productivity, accessibility (reachable within a day or week), shallow depths, and 

average temperatures (Figure 2).   



www.manaraa.com

 

 

9 

 

 

 

Figure 2. Tag cloud of nutrient FDS user needs, priorities, and characteristics.  A qualitative visualization 
tool to provide a facile overview of recent ACT and American University survey information (2005, 2009, and 
2014) overlaid within six major categories for marine environmental data needs (Koeppen et al. 1978a).   
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Over three-quarters of surveyed users collected nutrient data in the field and measured 

nutrients primarily ex situ, while nearly half of coastal professionals used in situ nutrient sensors 

some of the time, whether custom built packages (4%; 6%), commercial products (70%; 58%), 

or a combination of the two (26%; 38%) (ACT, 2005; 2009).   The most common application for 

nutrient FDS was on a remote platform making continuous measurements, most often at an 

hourly interval.  ACT respondents prioritized accuracy, precision, dynamic range, and 

operational parameters (sensitivity and resolution) in FDS for nutrient data over all other 

operational considerations (Figure 2).    

 

1.1.3. Towards autonomous FDS: Technology outlook  

Compared to inline cabinet analyzers, test kits, portable and handheld instrumentation, 

FDS offer the additional advantages of dynamic sampling strategies and remote autonomous 

operation that lowers costs associated with manual sampling efforts (e.g., personnel, travel, 

equipment, sample transport) (Moore et al., 2009).   In addition, sampling and subsequent 

analysis on site also removes the risk of error and contamination associated with manual sample 

acquisition, storage, and transport.  The portability and packaging of FDS enables deployment 

from a variety of platforms, including buoy systems, remotely operated vehicles and gliders, 

profilers, and underway systems (Adornato et al., 2010).      

Operational considerations, while extraneous to pure ‘data needs’ are often the limiting 

factor for FDS and the area where instrument deficiencies are commonly expressed (Koeppen et 

al., 1978a).   Moreover, the periphery subsystems of FDS ultimately limit reliability, accuracy, 

and durability in real-world environments.  The design of the interface between the device and 

the environment is often underdeveloped (Marle and Greenway, 2005), yet altogether necessary 
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to make long-term autonomous deployments realistic (Campos and da Silva, 2013).   In practice, 

FDS must detect their target analytes accurately and precisely (often at trace levels) while 

enduring hostile environmental factors, physical shock, self-correcting for instrument drift and 

stability, dealing with biofilm and particulate matter, and consuming minimal power.  Inevitably 

these confounding environmental factors raise the cost of fabrication and design (Diamond et al., 

2011).   The ACT surveys found the most common constraints for FDS adoption were cost, lack 

of confidence in data and technical expertise.  FDS limitations commonly cited were ease of 

calibration, overall reliability/durability, hardware/software data management, and 

range/detection limits (ACT, 2005; 2009).  The overall complexity, technical demands, operating 

errors, and reliability are manifested in the form of state of the art FDS that cost $20,000 - 

$30,000, are limited to field deployments of a few weeks, and require an advanced level of 

training to operate (ACT 2015).   These factors can result in a significant cost disparity between 

nutrient FDS implementation and traditional sampling and ex situ analysis.  For example, a 

nitrate measurement performed by the US Geological Survey cost US$4,400 on average in 2013 

(including salary, equipment and laboratory analysis), and the average cost of a discrete 

measurement by a FDS probe (including instrument acquisition, maintenance, and data 

validation costs) of $60,000 (Betanzo et al., 2015).   

The uncertainties surrounding FDS could be mitigated with technical product support, a 

trait highly valued by the user community, and slightly less expensive systems ranging from 

$1,000 - $5,000 (ACT 2014).  Realization of practical FDS involves satisfying both analytical 

requirements (minimal drift, resistance to biofouling, analyte specificity in complex matrices, 

and data validation of accuracy and precision) and technological requirements (production on a 

mass-scale, minimal power requirements, and robust electronics) (Radu et al., 2013; Zuliani and 
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Diamond, 2012).  Maintenance and major service issues that result in unfeasible time and 

financial costs must also be addressed.  

To make continuous monitoring with FDS realistic, plans of data handling, transmission, 

and quality assurance must also be in place.  As potential solutions for these complex and 

interdependent concerns, emerging techniques for chemical detection and determination, 

instrument miniaturization, alternative energy, and wireless communication must prove their 

legitimacy in actual field applications and deployments.   Sponsorship of the scientific merit 

behind these exercises associated with bringing inventions through TRLs 4-6 and beyond will be 

a key driver to their success (Prien, 2007a).  To reach technological maturity and achieve an 

innovative reach, FDS will ultimately need to offer clear advantages over other sampling and 

measurement techniques; FDS must become cost-saving tools, practical in terms of trained 

personnel, interoperable with other sensor systems and platforms, and compatible with 

monitoring and research expectations and processes (Dragos et al., 2006).  Until that point, we 

cannot expect FDS to become routinely depended on or adopted by the majority of users (Ho et 

al., 2005; Shade et al., 2009).   

 

1.1.4. Detection Strategies  
 
At its most basic definition, a FDS operates autonomously at the sampling location and 

turns a chemical quantity into an electrical signal, which is in turn processed and reported.  The 

concept of a Total Analytical System (TAS) (Graber et al., 1990) applies to automation of the 

relevant phases of a quantitative chemical analysis, including sample introduction, sample 

transport, chemical reactions, chromatographic separations, detection, and transport to waste 

(Manz et al., 1990).  Motivation for improved analytical performance and efficiency brought 
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forth the concept of the micro-Total Analytical System (µTAS) (Manz et al., 1990), a system 

capable of precisely handling volumes on the microliter level and performing assays in terms of 

seconds at or near the sampling site.   Simultaneously, this miniaturization offered a convenient 

platform for portability and automation (Greenway et al., 1999).  A realization and extension of a 

µTAS, a FDS is integrated with all necessary periphery subsystems working together to handle 

the mass flow and information flow of long-term, unmanned in situ chemical analysis.   

The detection principle of any µTAS not only determines performance factors such as 

dynamic range, accuracy, and precision, but also influences downstream decision factors such as 

hardware, consumables, power requirements, maintenance, and limitations.   Wide ranges of 

analytical techniques are available to quantify nitrite in aqueous samples, and consist of mature 

methods (i.e., spectroscopy, electrochemical) and relatively novel and emerging methods (i.e., 

biosensors).   Optical approaches include reagent-based wet chemistry such as colorimetry based 

on the Griess assay (1879), fluorescence (Masserini and Fanning, 2000; Liu et al., 2009), 

chemiluminescence (Mikuška and Večeřa, 2003), and direct spectroscopy including ultra-violet 

absorption (Zhang et al., 2011; van den Broeke et al., 2006) and Raman scattering.  Nitrite is a 

highly electroactive species and can be detected at metal, chemically modified, and enzymatic 

electrodes (Badea et al., 2001).  Finally, biosensors may produce an optical or electrical signal, 

which is mediated by biological activity consisting of a bacterial community or specific 

enzyme(s) (Almeida et al., 2010).   

Extensive reviews and examples of the performance and parameters of these detection 

principles for nitrite have been previously described (Yilong et al., 2015; Ma et al., 2014; Dutt 

and Davis, 2002; Moorcroft et al., 2001; Miró et al., 2003), and provide information on 

selectivity and sensitivity for nitrite across different matrices.  Developers of FDS must first and 
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foremost consider the underlying chemistry of the method and the approach’s stability across 

large temperature, pressure, and salinity gradients.  Adjustments for chemical interferences from 

air bubbles, particulate matter, and complicated sample matrices must also be considered for 

long-term autonomous deployments (Campos and da Silva, 2013; Rios and Zougagh, 2013).  

Further challenges include the adaptation of the chosen method to meet storage demands, self-

cleaning and calibration abilities.      

 

1.1.5.   Trends in the literature  
 
1.1.5.1.   Methodology  

 
To investigate the trends in development and application of FDS for nitrite sensing, a 

content analysis was conducted on the body of literature describing the development of the major 

approaches for nitrite analysis and environmental monitoring.  Searches through six databases 

(Google Scholar, SciFinder, IEEE Explorer, ProQuest Aquatic Sciences Collection, Compendex 

Engineering Database, and Web of Science Core Collection between the period of 2/3/16 and 

3/7/16 were performed. Initial searches using keywords intended to be as broad as possible (e.g., 

‘Nitrite’ and ‘Sensor’ and ‘Water’) were used to capture the most possible works.  Relevant 

returns (based on queries of Title and Abstract fields) were collected and organized in EndNote 

(Web of Science).  Removal of replicate entries produced a list of 1,102 records. Further 

processing separated literature into the main categories based on detection principles, and two 

categories based on Technology Readiness Levels (Mowlem et al., 2008).  While this search 

process cannot capture every publication in this field, it will provide a comprehensive and 

representative sample as the databases queried cover the areas of chemistry, electronics, 
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engineering, and application. This is representative of the multi-disciplinary nature of FDS 

development and use.   

The resulting database of works spanned over 40 years and contained over 350 different 

publication sources.  Approximately 89% were published in academic journals, 6% in conference 

proceedings, and 5% in trade papers and patents.  Of the academic journals, the top five journals 

containing the most publications were Analytica Chimica Acta (7.3%), Talanta (6.1%), Sensors 

and Actuators B (5.7%), Analyst (3.3%), and Electroanalysis and Electrochimica Acta (2.6% 

each).  A full list of the search keywords and phrases for the overall methodology and is 

provided in Appendix A (Figure A.1).   

 
 
1.1.5.2.    Findings 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Analysis of peer reviewed publications for nitrite analysis.  Publications regarding 
nitrite detection and determination in aquatic environments and associated category components 
over time.  
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Overall, the number of publications on nitrite sensing methods and technologies for 

environmental applications have tripled on average each decade (Figure 2).   Since Murray’s 

Grand Challenge, there have been over 1,100 reviews published on the topic of environmental 

analysis (Radu et al., 2013), and the number of publications pertaining to nitrite has risen to over 

470 at an average of 75 per year (2010 – 2015, Figure 2).  Each publication represents an 

investment of resources into development, review, and reporting of efforts to make nitrite 

detection more affordable, simplified, selective, sensitive, accurate, precise, and/or applied.  

 

 1.1.5.2.1.   Trends in detection strategies 

Among detection techniques, spectroscopic methods were found to be applied to sensors 

at a higher percentage (37%) than electro-chemical (28%) and biosensing (6%) approaches.  

Spectroscopic techniques consist mainly of the colorimetric method for nitrite, which remains 

the gold standard due to its economic and analytical advantages afforded by its relative 

simplicity, instrumentation availability, (Moorcroft et al., 2001; Dutt and Davis, 2002), high 

degree of accuracy and sensitivity (Gong et al., 2009; Hansen and Koroleff, 1999; Moscetta et 

al., 2009), as well as stability and linearity in a variety of environmental matrices (Ma et al., 

2014; Sieben et al., 2010).  Colorimetric methods can routinely achieve sub-nanomolar 

concentrations (Ma et al., 2014) as part of low-cost detection systems consisting of components 

such as LED light sources (O’Toole and Diamond, 2008; Bui and Hauser, 2015; Capitan-Vallvey 

and Palma, 2011), reverse-biased LEDs (O’Toole et al., 2007), transducers integrated into 

custom circuitry (Gong et al., 2009), and web cameras (Santos et al., 2016).    

The relatively stable nature, proven sensitivity, and accuracy of spectrophotometric 

methods have been employed in instrument packages for field deployments and have resulted in 
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commercial realizations of FDS (Table 2).  Early instruments were used as submersible profilers 

for shipboard use (Hanson, 2000; Masserini and Fanning, 2000; Thouron et al., 2003), and with 

autonomous floats, vehicles, and profilers (Steimle et al., 2002; Bryne et al., 1999; Adornato et 

al., 2005).   The challenges for field applications of optical methods occur in turbid and complex 

sample matrices, where light scattering and refraction from colloidal and suspended particulate 

matter and chemical interferences require some form of sample pre-treatment or filtration.  The 

need for reagents and the related concerns of stability and contamination can also be severe 

disadvantages for extending deployment lifetimes for sensors using wet chemistry (Dutt and 

Davis, 2002; Yilong et al., 2015; Bende-Michl and Hairsine, 2009).  Finally, biofouling remains 

a significant limitation for long-term deployments (Adornato et al., 2010; Cleary et al., 2013; 

Campos and da Silva, 2013; Nightingale et al., 2015).    

Electrochemical sensors are among the most widely used in situ chemical sensors for 

oceanographic research in general (Moore et al., 2009) and are anticipated to be the fastest 

growing sector of the chemical sensor market globally (Research and Markets, 2015).  These 

sensors are highly valued for their measurement simplicity, immunity to colored and turbid 

waters, freedom from reagents, and low cost.  Recently the desire to invest resources into 

developing electrochemical and biosensors for nitrite is evidenced by the rapid increase in their 

publication numbers over the past decade, when articles featuring electrochemical and biosensor 

design and development accounted for nearly 45% more publications than those implementing 

optical methods.   For nitrite FDS, researchers have predicted this trend because of the attractive 

potential simplicity and low maintenance that comes without need of reagents (Dutt and Davis, 

2002; Bende-Michl and Hairsine, 2009).    
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Though electrochemical techniques are mature, well documented, and have been in use 

since the early 1900s (Yilong et al., 2015), nearly 50% of the publications concerning 

electrochemical publications for nitrite came after Murray’s Grand Challenge in 2010.   Much of 

the literature in this area has been devoted to making improvements to sensitivity, selectivity, 

and stability of voltammetric electrodes through surface modification and experimentation using 

new substrates, nanomaterials, and electroplating techniques.  As a result, voltammetry has 

proven to be very sensitive and selective in controlled environments.  Malha et al. (2013) 

reported a 5 nM Limit of Detection (LOD) with 2.5% relative standard deviation for nitrite 

concentration using a carbon black on solid paste electrode in a laboratory environment.  Still, 

application to field analysis and commercialization is extremely limited due to interferences in 

complex matrices and stability issues in real-world environments.  Though the use of carbon 

nanotubes have extended electrode stability to well over a month’s time in the lab (Zhou et al., 

2013; Zhang et al., 2013), sensor response and performance is severely compromised when 

exposed in situ, where other oxides, gas bubbles, and ions adsorb to the electrode surface more 

frequently and rapidly (Yilong et al., 2015; Dutt and Davis, 2002).  Dutt and Davis (2002) 

described the literature related to these methods as more curiosity-driven than applicability-

driven; 15 years later, the aforementioned operational requirements still constrain voltammetric- 

based sensors for a long-term, autonomous FDS.   

Potentiometric classes of electrochemical sensors, or ion-selective electrodes (ISEs), 

represent the other major class of electrochemical sensors.  Solid state, liquid-based, or 

compound sensors detect species activity at the interface of the sensor membrane and sample, 

where establishment of chemical equilibrium leads to a change in voltage that is compared to a 

reference electrode.  Because of the membrane’s ion-specific affinity and transport ability, ISEs 
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are highly selective, low power, and do not consume or produce chemical species (Harris, 2007; 

Hanrahan et al., 2004).  These benefits make ISEs robust, simple to fabricate, easy to use, low 

cost, and portable; as such, they have become the favored electrochemical approach for in situ 

analysis and commercialization (Zuliani and Diamond 2012; De Marco et al., 2007; Radu et al., 

2013; Dutt and Davis, 2002).   Additionally, ISEs are versatile: they can be combined to detect 

multiple species within the same instrumental setup, have a wide operating detection range 

(spanning up to 12 orders of magnitude), and offer the greatest potential for fast measurements 

(seconds to minutes) (Bende-Michl and Hairsine, 2009; Radu et al., 2013).    

  For all of their practical advantages, ISEs are generally implemented for screening and 

confirmatory monitoring rather than research investigations characterizing subtle changes in 

aquatic environments (Dutt and Davis, 2002; Radu et al., 2013; Yilong et al., 2015).  Though 

ISEs do not offer the sensitivity and precision of voltammetric and wet-chemistry sensors, their 

analytical performance has improved thanks to theoretical-based developments over the turn of 

the last century (Zuliani and Diamond, 2012; Bakker et al., 2011; Radu et al., 2013).  An 

example of such improvement is given by Prasad et al. (2004), who reported development of a 

polymer-membrane potentiometric nitrite sensor capable of reaching a 1.0 μM LOD that could 

be stored for 5 months in a 0.1 M NO2
- solution.   

 With the combination of steadily improving analytical attributes and overall practicality, 

ISEs show great promise and potential for their application as FDS for nitrite.  When it comes to 

in situ and automated operation, however, the challenges facing their deployment are not easily 

overcome as ISEs suffer from similar problems that plague optical and other electrochemical 

sensors: Interferences in complex matrices, biofouling, and instrument drift.  For the 

potentiometric sensor, operational problems are manifested in corrupted and passivated 
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membranes caused by interferences from other anionic species, biofouling, and mechanical 

shock or physical damage from debris in the water.  These issues can result in sluggish response, 

highly unreliable data and erratic behavior (De Marco et al., 2007; Harris, 2007; Yilong et al., 

2015; Radu et al., 2013).  These problems are compounded by the fact that polymeric 

membranes, the most versatile and sensitive, are quite fragile compared to crystalline 

membranes, have a limited shelf life and may leach components into the sample solution (Radu 

et al., 2013; De Marco et al., 2007, Harris, 2007).   

 

1.1.5.2.2.   Flow injection technologies  

Flow injection analysis (FIA) as an umbrella term encompasses the application of 

automated fluidic technologies and techniques to an analytical chemical process.   There has 

been an increasing awareness and application of FIA in the form of microfluidics, with over 

1,700 publications from 2004 – 2013 (Antony et al., 2014).  Varying forms of FIA including 

segmented, sequential, reverse, and micro-fluidic injection techniques have been employed most 

frequently with optical detection methods in literature regarding environmental measurement of 

nitrite (Figure 3).  The use of FIA-related technologies with optical detection methods represents 

a higher degree of autonomous operation than other detection methods (e.g., electrochemical, 

biosensors) have achieved. 

Reviews of applications of FIA techniques to analysis of dissolved nitrite, among other 

target analytes, showcase the actuators, pumps, fabrication, and technologies necessary to make 

FDS use possible from vessels and in situ deployment platforms (Miró et al., 2003; Worsfold et 

al., 2013; Nightingale et al., 2015).  Flow propulsion and operational function with electro-

osmotic flow, increasingly miniaturized pumps and actuators, bio-mimicking ionogels, multi-
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commutation strategies, and lab-on-chip/lab-on-valve fabrication have been reported to save time 

and minimize cost, reagents, size, power, and waste (Greenway et al., 1999; Feres and Reis, 

2005; Cerdá et al., 1998; Wu and Ruzicka, 2001; Sieben et al., 2010; Zhang et al., 2009; 

Melchert et al., 2007; Rodenas-Torrabla et al., 2006; Czugala et al., 2013a).  The trends of FIA-

related applications to nitrite sensors appear to correlate well with literature also utilizing 

spectroscopic methods (Figure 3), with 75% of publications appearing after 1995 and 50% after 

2000.  Despite the advances in microfluidic technologies and applications, the number of 

publications with FIA-related keywords experienced a slight decrease (2%) when comparing the 

last 10 years (2005-2015) to the previous decade (1995-2005).  Because the components 

involved in fluidic handling often make up the bulk of the cost in terms of instrument 

complexity, power consumption, overall size, and financial expense of a chemical analyzer 

(Cogan et al., 2013), there may be a trend to move towards reagent-less electrochemical or 

spectroscopic sensors which require fewer moving parts and less overall complexity.   

 

1.1.5.3.   In situ examples and state of the art  

 Though there are examples in the reviewed literature describing the development of 

custom built FDS across TRLs 4-6 (Figure 1), (i.e., Nakatani et al., 2004; Park et al., 2004; 

Hirata et al., 2003), and underway monitoring applications, (Li et al., 2008; Chen et al., 2008; 

Chavez et al., 1991; Petersen et al., 2006; Petersen et al., 2014), only around 2% qualified as 

describing FDS TRL 7 or above.  This lack of literature supports Mowlem et al.’s assertion 

(2008) and reveals there is still a need to fill the gap when it comes to reporting actual 

deployments and field trials.     
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In 1986 Johnson et al., described the SCANNER, an automated submersible flow 

injection system with spectrophotometric detection.  Since that time, there have been several 

examples of nitrite FDS that have been commercially produced and successfully deployed and 

reported on by the research community.   First generation submersible chemical analyzers at the 

turn of the century were used in cabled and profiling oceanographic research applications and 

were characterized by flow injection schemes coupled with spectrophotometric detection and 

multi-parameter analysis capabilities.   Commercial and custom-built systems such as the 

Spectral Elemental Analysis System (SEAS) (Byrne et al., 1999; Byrne et al., 2001; 

Kaltenbacher et al., 2000, 2001), the AquaSensor (Dunning and Sawkins, 2000) and the 

SubChemPak Analyzer (Hanson, 2000) proved that the concept of bringing the laboratory to the 

field could be effective by measuring and recording nitrite concentration values at higher 

temporal and spatial resolutions than previously possible, allowing researchers to measure high 

resolution vertical gradients, map plumes, and identify primary nitrite maxima.  On-board 

standards, cleaning agents, and dual-path cells enabled accurate measurements and background 

corrections for optical drift, absorbance, and scattering.  The sensitivity of these wet chemistry 

analyzers rivaled laboratory analysis with reported detection limits down to 1.0 nanomolar 

(Hanson, 2000).   However the high investment cost and maintenance requirements associated 

with instrument operation and upkeep of components such as system consumables, fiber optics, 

lamps, diffraction gratings, liquid core waveguides, valves, and pumps along with reliability 

issues (fluidic errors, breakages, optical interferences) (Worsfold et al., 2013; Fay et al., 2011) 

severely limited the practical use and widespread adoption of these systems.  

The current generation of wet chemistry FDS (Table 2) have taken advantage of advances 

in hydraulic and electronic technologies to produce smaller, more physically robust, and faster 
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instrumentation while also consuming less power, reagents and calibrants.  A lab on a chip, 

LED-based colorimetric system was combined with an inline filter and syringe pumps to detect 

an environmental sample and auto-calibrate with the use of on board standards.  The automated 

colorimetric sensor was applied to nitrite and nitrate determinations during an unmanned 26-day 

field deployment in an estuarine environment (Beaton et al., 2012).  The analytical performance, 

ruggedness, and specifications of the instrument exhibit the characteristics required for the 

practical application of field-ready microfluidic water analysis devices (Kovarik et al., 2012).   

The reported LOD of 15 nanomolar (Beaton et al., 2011) also represents a highly sensitive nitrite 

analysis which when applied to the study revealed fluctuations and patterns in the estuary which 

would have gone undetected under a traditional, manual monitoring regimen.    

A series of in situ instruments from Systea Inc. (Italy) that have undergone prolific field 

deployment includes the Nutrients Probe Analyzer (NPA), Deep-sea Probe Analyzer (DPA), and 

Water In Situ Analyzer (WIZ) for autonomous and continuous environmental monitoring. Wet 

chemistry fluorimetric and absorbance based spectrophotometry analysis is carried out within a 

micro Loop Flow Analysis (μLFA) reactor which effectively removes air bubbles and enables 

sequential batch analysis and manipulates the fluidic components for reaction, detection, wash, 

and calibration cycles (Bodini, et al., 2015).  The probes have been deployed on coastal marine 

buoys and platforms and have autonomously collected and reported measurements of nitrite, 

nitrate, orthophosphate, and ammonia.  Reagents are stable for 3-4 weeks, and the units may be 

controlled through cellular communication (Azzaro and Galleta, 2006).  Reports of Systea 

instrumentation documenting in-field use and instrument intercomparsions (Moscetta et al., 

2009), continuous online measurements in a time series monitoring station (Grunwald, et al., 

2007; Reuter et al., 2009), use at 1,500 meters depth (Moscetta et al., 2009), tethered to an 
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unmanned platform powered by solar and wind energy (Gunatilaka et al., 2009), and in 

automated sensor networks spanning multiple years of operation in open natural waters 

(Vuillemin et al., 2009; Bodini et al., 2015).  The probes have been able to discriminate between 

low levels of nitrite (sub-μg/L) in oligotrophic waters, have withstood exposure in coastal waters 

for weeks at a time (Azzaro 2013; Vuillemin et al., 2009), and have correlated well with grab 

samples analyzed ex situ under laboratory conditions (Bodini et al., 2015).  Systea has directly 

addressed ACT survey group (Figure 2) desires by making improvements in these areas and by 

providing constant technical support and assistance; in their view, this level of customer support, 

ease of calibration and maintenance will be important steps in the commercial strategy for 

nutrient analyzers. 

One of SubChemSystems’ current FDS, the Autonomous Profiling Nutrient Analyzer 

(APNA), is specifically designed to measure sub-meter scale nutrient gradients and can be 

deployed from a variety of platforms, both towed or stationary, and in continuous or autonomous 

data collection modes (Hanson, 2000).   SubChemSystems’ instrumentation has been reported to 

track nitrite and other nutrients in chemical plumes (Hanson and Moore, 2001), investigate thin 

plankton layers and the influence of stratification and turbulence, identify fine-scale structures of 

nitrite profiles, and investigate biogeochemical cycling as at ecologically critical scales for 

model validation and support (Hanson, 2000; Egli et al., 2009).  Using the APNA in estuarine 

environments, Egli et al. (2009) captured changes in nitrite concentrations caused by tidal 

oscillations and advective fluxes, turbulence from coastal storms, upwelling, and freshwater 

runoff.  Gilbert et al. (2013) sampled a salt-water estuary at an hourly time scale and used the 

enhanced spatial and temporal coverage to assess mixing behavior associated with ebb and flood 
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tides and demonstrated nutrient transformations and water body mixing across the tidal and 

seasonal cycles.   

 Sensors utilizing direct UV spectroscopy in analytical chemistry date back to the 1950s, 

and probes for nitrate are now industry standard in environmental monitoring because of the 

enhanced mathematical processing power afforded by miniature diode array detectors and 

microprocessors (van den Broeke, 2007; Sandford et al., 2007).  S::CAN and TriOS have taken 

advantage of these advances to develop and produce instruments capable of indirectly measuring 

nitrite with chemometric models (Table 2).  The S::CAN Spectro::lyzer uses a principal 

component analysis and partial least squares regression to create a multi-wavelength algorithm to 

construct calibrations, or ‘spectral fingerprints,’ to differentiate between chemical parameters.  

Such detection systems offer the advantages of robust and compact analyzers that can be placed 

directly in the sample media and require no moving parts or chemicals for measurement or 

cleaning (Rieger et al., 2004; van den Broeke et al., 2006; van den Broeke, 2007).   Multiple 

optical path lengths give a range of sensitivity options, and with split-beam measurements 

coupled with multi-wavelength algorithms can compensate for turbidity, allowing these 

instruments to operate in a wide range of water types from industrial to ultra-pure (Rieger et al., 

2004; van den Broeke et al., 2006).  The Spectro::lyzer has been used to detect nitrite in water 

and wastewater treatment applications to provide relevant and appropriate controls of 

denitrification and aeration processes (Boley and Müller, 2004; van den Broeke et al., 2006), and 

for environmental river monitoring programs and industrial applications as early warning 

detection systems of organic contaminants (Libovic et al., 2006).  Sandford et al. (2007) reported 

the use of the TriOS ProPS to investigate nitrogen cycling in natural waters and quantified 

diurnal nitrate and nitrite processes, patterns, and baseline perturbations. 
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Table 2.  Examples of state of the art FDS for nitrite.  Part 1.  Data specifications.  
 

Provider/ 
Instrument 
Name 

ME 
GRISARD 

GmbH 
Water-APP 

4004 

Systea S.p.A. WIZ 
Probe 

National 
Oceanography 

Center, UK 

SubChemSystems 
Inc. APNA 

S::CAN GmbH 
Spectro::lyzer 

TriOS GmbH  
OPUS UV 

Detection 
Principle  

Wet Chemistry - 
Based on Griess 
assay 

Wet Chemistry - Based 
on Griess assay 

Wet Chemistry - 
Based on Griess 
assay 

Wet Chemistry - 
Based on Griess 
assay 

UV Spectroscopy - 
Indirect Chemometric 
Model 

UV Spectroscopy - 
Indirect Chemometric 
Model 

Monitored 
Parameters 

NH4, NO2, 
NO3, PO4, 
SiO4, Metals, 
Others 

N-NH3, P-PO4, N-
(NO3 + NO2); N-NO2 NO3, NO2 NO2, NO3, PO4, 

SiO4, Fe(III), NH4 

NO3-N, NO2-N, 
COD, BOD, TOC, 
DOC, UV254, BTX, 
AOC, temp., press. 

NO3-N, NO2-N, 
COD, BOD, TOC, 
DOC, NH2Cl, HS, 
temp. 

Detection 
Limit and 
Range 

Up to 40 mg/L 
0.002 - 0.25 mg/L 
NO2-N  (0.14 μM - 
17.84 μM) 

0.02 μM  1 cm: 0.05-50 μM;    
5 cm: 0.05-11 μM 

0 - 2.9 mM SW; 0 - 
35.7 mM WW; 
Typical LOD 7.1 μM 

0 - 14.3 mM  NO2-N  

Reported 
Accuracy 

< 2%; +/- 2% of 
calibration value  

+/- 2% accuracy at 
100%; +/- 3% accuracy 
at 5% 

NA NA NA NA 

Reported 
Precision NA 

+/- 2% accuracy at 
100%; +/- 3% accuracy 
at 5% 

Estimated 
Uncertainty (0.08 
μM, 2x Stdev)  

2% (of range) NA NA 

Interference 
Compensation 
and Sample 
Pretreatment 

Filter module 
available 

DTPA and TRIS buffer; 
UV-digester; 0.45 um 
filtration cartridge 
option; Copper-based 
antifouling protection; 
Full removal of air 
bubbles  

0.45 µm pore size 
Millex HP inline 
filter; Reference 
detector corrects for 
background 
absorption 

4-filter sampling 
head (10 µm); 
Copper mesh 
surrounding each 
filter; Reference 
detector corrects for 
background 
absorption 

Spectral 
deconvolution 
algorithms 

Spectral deconvolution 
algorithms 

Minimum 
Temporal 
Resolution 

4 readings / hr. 30 min. for a full 4 
parameter cycle  5 min.  1/sec. (~7days 

duration) 20 sec. < 1 min. 

 
Key:       D=Diameter  H=Height  SB=Standby Mode  OP=Operational Mode  Press=Pressure  Temp=Temperature  Avg= Average  Stdev= Standard Deviation 
               SSW= Surface Seawaters IW= Inland Waters  DW=Drinking Water   WW=Wastewater   GW=Groundwater 
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Table 2 Continued.  Part 2. Operational considerations.  

Ambient 
operating 
conditions 

SSW, IW; 5 - 
40° C; Up to 7 m 
depth; Range of 
salinities 

SSW; 4 - 40° C 

SSW; Operated in 4 
°C without impact; 
Has descended to 
170 m depth 

SSW; Up to 200 m 
depth, press. 
compensated 

SSW, GW, DW, WW, 
IW; Operating press.: 0 
- 3 bar; Storage temp.: -
10 - 50° C 

SSW, GW, DW, WW, 
IW; 300 m depth; 
Operating temp.: 0 - 
40° C 

Weight  
Weight in air, 
ready for 
operation: 8 kg 

8 kg in air (without 
reagents) 

1.1 kg in water (no 
battery), 1.5 kg 
(with battery) 

Air: 8.8 kg; Water: 
1.4 kg (7.5 L 
displacement) 

3.4 kg (including cable) NA 

Dimensions NA 

Analytical unit: 140 
mm D x 520 mm H; 
Reagents container: 70 
mm D x 200 mm H 

100 mm D x 200 
mm H (without 
reagents or power 
supply) 

16.8 cm D x 32.6 
cm H 

44 mm D x 612/656 
mm H 

48 mm D x  460 mm 
H (without connector) 

Power Supply 12 VDC External 
Battery 

12 VDC, 3 A; 5 m 
underwater cable or 
portable battery pack 
with photovoltaic cell 

NA 
12 VDC/ 12-75 
VDC; Single 
underwater cable  

11 - 15 VDC; Can be 
supplied by solar power 

9 - 28 VDC; Optional 
external battery pack 

Power/ 
Electrical 
Consumption 

Avg. power 
consumption: 1.2 
W; SB: 0.063 A; 
OP:  0.1 A; With 
heater: 1.7 A 

OP: 6 W; SB: 3 W; 
Maximum 1 A 

1.5 W; 1200 J per 
sample 

OP: 28 W; SB: 33 
μW 

Avg.: 4.2 W; Max: 20 
W 4 - 20 mA 

Reagent Life NA 4 - 10 weeks; cooling 
by ambient water 

Min. 1 week; Max. 
up to several months 
(reagents stored 
separately) 

~3 months  NA NA 

Reagent 
Consumption 

< 0.5 
mL/measurement 

30 - 60 μL per analysis; 
minimum 1,000 
analyses on board 

In continuous 
operation: 0.088 L 
reagent and 0.029 L 
standard per 24-hr 
period 

NA NA NA 

Data Output 
& Telemetry  

RS232 serial 
port; Remote 
control possible 

RS232 serial port; 
Telemetry via cellular - 
GSM modem; WiFi 
capable 

RS232 serial port  

RS232/485-ACII, 
Ethernet; 
Telemetry via 
RF/cellular/Wi-
Fi/Acoustic/Iridiu
m/LAN 

Integrates into family of  
S::CAN sensors and 
control systems; Data 
logger mode possible; 
Telemetry possible with 
additional components 

RS232/485, various 
protocols; external 
data logging possible; 
Telemetry via network 
TCP/IP 
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Table 2 Continued.  Part 3. Complimentary considerations. 

Commercially 
Available Y  Y N Y Y Y 

Capital 
Cost/Unit NA NA NA NA NA NA 

Notes on 
Autonomy 

Automatic 
change of light 
path length; 
Maintenance free 
time at least 8 
weeks  

Max. 2 months 
autonomy; auto-
calibration and wash 
cycles 

Capable of 6 blank 
corrections per hr; 
Standard curve up to  
4 standards 

5-point calibration 
by standard 
addition method 

Maintenance free 
operation - no moving 
parts, no consumables; 
Automatic cleaning 
with compressed air 

Maintenance free 
operation - no moving 
parts, no consumables; 
Automatic cleaning 
with compressed air 

Reported 
Deployment 
Modes & 
Geographic 
Areas 

NA 

Moored buoy systems; 
Coastal waters, 
lagoons, oligotrophic 
waters 

CTD, benthic 
lander, buoy; 
Estuary; arctic open 
waters,  seafloor 
oxygen minimum 
zone 

Vertical or towed 
profilers, 
autonomous 
moored profilers, 
autonomous 
underwater 
vehicles, fixed-
depth piers or 
moored buoys; 
Coastal waters, 
rivers and estuaries 

Mounting and 
measurement directly in 
the media or in a flow 
cell (monitoring 
station); WWTP  

Mounting and 
measurement directly 
in the media or in a 
flow cell accessory  

Consecutive 
Time 
Reported In 
Situ: 
Autonomous 
Nitrite  
Measurement 

NA 14 days; 18 days; 35 
days (typhoon limited) 

57 hrs; 70 hrs; 26 
days; 40 hrs  

3 weeks; 19 days; 
23 day period (non-
consecutive) 

30 days NA 

Key 
References  

ME GRISARD 
GmbH; ACT  

Bodini et al., 2015; 
Moscetta et al., 2009; 
Vuillemin et al., 2009; 
Systea S.p.A.; 
Vuillemin and 
Sanfilippo, 2010 

Beaton et al., 2011, 
2012; Yücel et al., 
2015; Cross et al., 
2015 

Egli et al., 2009; 
Hanson 2000; 
Hanson and Moore, 
2001; Gilbert et al., 
2013; 
SubChemSystems, 
Inc. 

S::CAN GmbH; Rieger 
et al., 2004; Boley and 
Müller 2004; van den 
Broeke et al., 2006; van 
den Broeke, 2007 

TriOS GmbH; 
Sandford et al., 2007; 
Pellerin et al., 2013 
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1.2.   Discussion  

1.2.1.   FDS Outlook: Technical advancements and limitations  

The examples of nitrite FDS listed in Table 2 represent a culmination of the FDS vision 

that has been in the making for over four decades.  The newest generation of this technology has 

begun to make the necessary adjustments for long-term, unmanned deployments outlined by 

Campos and da Silva (2013).  Power requirements, reagent consumption, and size have all 

decreased while robustness, variety of instrumentation, and telemetry capabilities have increased.   

For nitrite analysis, wet chemistry analyzers with the Griess reagents have proven to be 

chemically robust across large salinity and temperature gradients.  Sample introduction and 

pretreatment requirements using 10 µm screen filters, at times paired with copper wire for 

biofouling mitigation, have proven to be effective with minimal maintenance in real-world 

deployments (Egli et al., 2009; Vuillemin and Sanfilippo, 2010).  Instrument service to 

components, including cleaning of external films and particulate matter, and replacement of 

reagents, standards, wash solution, and filters have been reported to take place on a weekly or bi-

weekly basis, especially in turbid and highly eutrophic environments.  Cleaning cycles and 

compressed air backflushing can also serve to increase deployment life (Table 2).   

UV spectrophotometers are not limited by the factors affecting the reliability of wet-

chemistry analyzers, but their sensitivity and accuracy is inherently limited by dependence on the 

ability of statistical models to keep pace with changes in the sample matrix (Winkler et al., 

2008).  In oligotrophic conditions, UV spectrophotometers have not adapted well to discern trace 

levels of nutrients (Vuillemin and Sanfilippo, 2010).  Though the sensors have the ability to be 

programmed with local, on-site calibration, in some cases very poor correlation with standard 

methods have been experienced (Boley and Müller, 2004) and even site-specific calibration 
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algorithms may not be sufficient to account for particle and turbidity disturbances (Winkler et al., 

2008; Rieger et al., 2004), leaving these type of sensors better suited as screening or alarm tools 

(van den Broeke et al., 2006).    

Electrochemical sensors for nitrite meanwhile are advancing towards autonomous, long-

term in situ deployments and are improving their figures of analytical merit.  Electrochemical 

techniques have been coupled with biosensors in commercial units (UniSense, 2016) and have 

made advancements in mass production techniques by screen-printing electrodes, furthering the 

vision of low-cost, reagentless, and even disposable sensors (Radu et al., 2013).  Before 

electrochemical sensors for nitrite can effectively integrate into FDS instrument packages and 

penetrate commercial markets, developers must resolve maintenance and stability issues that 

preclude electrochemical FDS from long-term, autonomous in situ operation.  Currently, the high 

frequency of cleaning, recalibration, and electrode rejuvenation or membrane replacement 

prevents long-term deployments (Bende-Michl and Hairsine, 2009; Campos and da Silva, 2013).  

Lack of stability and robustness of the reference electrode also represents a hurdle, as common 

electrical fluctuations and drifting upon continuous sample exposure and less than ideal 

operating conditions leads to poor reproducibility, accuracy, and sample carry-over (Campos and 

da Silva, 2013; Radu et al., 2013; Yilong et al., 2015; De Marco et al., 2007).  One solution 

involves pairing electrodes with fluidic devices and applying FIA techniques to mitigate 

electrode fouling and drift, clean electrodes, desorb foulants, and extend operational lifetimes 

(Tossanaitada et al., 2012; De Marco et al., 2007).  
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1.2.2.   Data handling, quality assurance, standardization, and nomenclature 

For all the progress being made and efforts devoted to the areas of FDS development, 

there is a disproportionate lack of literature surrounding the initiative to develop means of quality 

assurance, quality control, field experimental standardizations, metrics, and nomenclature that 

exists in laboratory analytical chemistry yet may differ entirely under in situ circumstances.    

In 1978, Koeppen et al. recommended efforts be made to establish uniform performance 

criteria, standardized performance specifications (from sources other than the manufacturer), a 

centralized information system listing commercially available instruments and development 

projects along with performance test data, well-defined and comprehensive classification 

schemes for instrumentation, and means of verifying performance against standard criteria 

(Koeppen et al., 1978a,b.)  In an assessment of the US government’s technology for 

oceanographic research and monitoring in 1981, the US Congress’ Office of Technology 

Assessment also identified the issues surrounding data sharing and collection in oceanic systems.  

The data, which was collected at a great expense to the public, often went unused because of 

non-standardized formatting and difficulty retrieving standardized quality assurance from the 

original data producer (US OTA, 1981).  A quarter of a century later, authors still found 

documentation and agreement on test protocols, international standards, and stringent metrics 

lacking (Mowlem et al., 2008; Guntilaka and Dreher, 2003).   

As can been seen in Table 2, categories of tabulated data on FDS specifications are not 

always easy to compare as measurement units and performance parameters are often 

inconsistently reported.  To make matters more difficult, there exists no defined methodology for 

reporting performance specifications in operational environments.  Developers and users of the 

nitrite FDS reviewed have at times validated their data against spot measurements using grab 
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samples and traditional laboratory analysis; however, this is not always the case and there are no 

requirements for how to consistently sample, measure, and report.   Consumers are not always 

provided the circumstances under which performance measures were taken, making assessment 

of in situ performance characteristics difficult.   

There have been encouraging signs from organizations such as the ACT, which has 

generated performance evaluations, workshop reports, and survey documents on FDS sue and 

performance.  FDS users and developers have also creatively integrated auxiliary physical and 

chemical probes (e.g. CTD, optical backscatter, DO, PAR, Chlorophyll a, CDOM, etc.) to make 

measurements that can lead to inferences about the quality and trends of nutrient concentrations.  

Yücel et al. (2015) used the raw photodiode output from the detector as internal calibration 

check, and Gilbert et al. (2013) developed a MatLab program to monitor data quality and flag 

‘bad’ readings by using the software to identify baseline, sample, and calibration peaks (standard 

addition method) and supported the data with manual grab samples.  As Prien (2007a) has noted, 

even if accuracy suffers at times, the ability of FDS to reveal overall trends and patterns may be 

a bigger determinant of their usefulness.   

To achieve practical employment and pervasive value of FDS, associated data products 

must be interoperable, discoverable, traceable, easily interpreted, and standardized.   Developers 

can design more effectively and efficiently by targeting the instrument to specific applications 

(Ríos et al., 2012; Kovarik et al., 2012) within a complete product life cycle (Figure 4).  

Considerations and decisions made early on in the design process regarding target performance 

ranges and specifications (Table 1), user needs (Figure 2), production management (e.g. lean, 

agile, concurrent engineering), device implementation and disposal have significant impacts 

downstream.  A critical undertaking necessary for success of FDS involves instrumentation 
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developed with interoperable features and 

interfaces, and integrated with automated 

QA/QC associated procedures (Pellerin et 

al., 2016).  Table 3 provides examples of 

such data management practices.   

 

 

 

 

 

 

 

 Relevant Water-Centric Examples Reference  
Application/Parameters See Table 1; Figure 2 
Physical Development:  
Marine Sensing Network ARGO Program Ifremer NA-ARC 

Nutrient μTAS: FDS See Table 2 

Data 
Management  

Validation/ 
QAQC 
Procedures & 
Codes 
 

IOOS Manual for Real-Time Quality Control of Dissolved Nutrients Observations Willis et al., 2015 

NDBC Handbook of Automated Data Quality Control Checks and Procedures NDBC, 2009 

Guidelines for Optical Techniques for Determination of Nitrate in Environmental 
Waters.  Pellerin et al., 2013 

Manual of Quality Control Procedures for Validation of Oceanographic Data IOC/IODE 1993 

WOCE Operations Manual WOCE, 1994 

Interface 
Standards/ 
Data 
Protocols 

OGC Sensor Model Language Botts et al., 2014 

OGC Sensor Observation Service Broring et al., 2012 

OGC Sensor Planning Service Interface Standard Simonis et al., 2011 

Observations and Measurements Conceptual Model - XML Implementation Cox, 2011 
Data 
Management 
and Planning 
 

Data Elements for Reporting Water Quality Monitoring Results NWQMC, 2006 

NSF Data Management Plan Overview CUAHSI (b) 

Strategic Plan for Coastal GOOS GOOS, 2012 

Data 
Exchange 
Platforms 

Water Data Center  CUAHSI (a) 

European Commission Information Exchange Platform and Library WFD CIRCABC 

OGC WaterML 2.0  OGC 

Water Quality Portal NWQMC 

ACT Technologies Database & Evaluations ACT 

Table 3. Relevant examples of FDS and data product life stages.  
 

Figure 4. FDS and data product life cycle.  
FDS operates a μTAS to turn a physical/ or 
chemical attribute into an information 
product that is processed and disseminated.   
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1.2.3.   Technological evolution 

The FDS listed in Table 2 have demonstrated the possible applications for such 

technology.  The information produced by these sensors can be powerful information for testing 

hydrodynamic models, validation of remote sensing products, as risk assessment tools for 

hazardous pollution events and plankton blooms, and as the basis for planning ship-based 

campaigns.  The more descriptive snapshots of concentrations across time and space can greatly 

improve and increase our understanding of biogeochemical processes and nutrient 

transformations and pathways, verify models, and save costly resources.  The provision of 

horizontal mapping and vertical profiling, time series measurements, and daily cycling in 

dynamic systems can capture both episodic events and reveal patterns of hydrological, 

environmental, and human influences.    

The information surrounding water quality will become more important if both regulatory 

measures and the general public’s concern for environment health and resource management 

increases.  This is already evidenced by a growing number of firms offering or developing FDS 

along with political manifestations such as the European Water Directive Framework generating 

funding for WSN, the ACT’s Nutrient Sensor Challenge, and the impetus to tackle pollution 

which led the People’s Republic of China’s to invest in over 100 Systea Probes to monitor the 

South China Sea (Bodini et al., 2015).   

The information provided by FDS must also evolve in tandem with the technological 

evolution from custom, or purpose-built sensors that fill a role the market has not yet met or 

cannot fill, to a product that has adapted to meet customer needs and has added economic value 

(Figure 1).  In order to become a true commodity, the information that FDS provides as a product 

must be standardized and organized.  Only then can it become a true utility to researchers and 



www.manaraa.com

 

35 
 

resource managers.   To achieve this goal, we must develop a framework to properly analyze and 

discuss FDS performance in operational environments.  This framework can fully support and 

promote their implementation.  Issues such as sensor inter-calibration that could jeopardize an 

entire experiment could instead be solved efficiently with tools built to handle massive data 

check procedures.  These tools could open the door for new ways to visualize, analyze, and 

disseminate complex data sets (Vuillemin et al., 2009).   

In the Nutrient Sensor Challenge and Preliminary Market Outlook (2015), the ACT has 

identified a crucial tenth TRL that involves diffusion and expansion and occurs after early 

adoption and growth of primary markets by early adopters.  The ACT desires a new generation 

of nutrient sensor that can overcome cost prohibitions, error and uncertainty issues, calibration 

errors, network communication losses, and overall uncertainty in underlying parameters.  The 

organization has outlined an aggressive time to market and rate of adoption over the next decade 

(ACT 2015).  A case study by Hanna et al., (2015) on innovation timelines found that the 

average time taken for new technologies to reach widespread commercialization is around 40 

years.  As we approach 40 years since Koeppen et al. (1978a, b) made recommendations to 

NOAA for developing nutrient FDS technology and evaluations, it is appropriate that we set up 

the support system FDS need in the form of standardized in-field performance metrics and 

specifications.  This effort can help cross the innovation chasm by providing conservative and 

skeptical consumers the evidence they need to trust and accept FDS.    

 These objectives will require more frequent field deployment validation and inter-

calibration between FDS and other analytical techniques (Allan et al., 2006).  Furthermore, 

developers must consider the entire life cycle of the FDS concept and methods to deliver user-

friendly and insightful instrumentation whose curated data products might encourage more 
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information gathering across sectors of government, industry, and academia.   Consequently, 

developers must also consider plans and resources for handling the vast amounts of data that will 

increase with the scaling up of FDS (Campos and da Silva, 2013; Shade et al., 2009).  Protocols 

to manage databases and provide quality assurance and quality control measures are challenging 

requirements that will need to be addressed in order to make automated sensing technologies 

optimized and useable (Shade et al., 2009).    

 

1.3.   Conclusion    

The potential consequences of erroneous, unreliable, imprecise, and inaccurate data can 

exaggerate the uncertainty surrounding FDS.  The associated risks can cause an underlying fear 

of failure that limits adoption and stymies innovation.  Innovations, however, are rarely offered 

in ready-made packages, but more as opportunities that come with failure as a necessary 

ingredient (Ortt and Smits, 2006).   Trial, error, and failure of FDS are essential processes in the 

discovery of new ideas and improvements.  Though acceptance, legitimacy, and fiscal concerns 

threaten the leap forward for FDS, Williams (2011) has reminded the scientific community that 

the consequences of failing to innovate and transcend technological lapses can have very 

dangerous consequences leading to the loss of scientific knowledge and understanding, 

ultimately resulting in the inability to adapt to a changing world.  To truly innovate the uses of 

FDS for nutrients, researchers and resource managers will need to learn manage risks, overcome 

traditional views surrounding monitoring and analytical paradigms, and embrace the idea of trial 

and error on the way.  It is the aim of this review to encourage researchers and resource 

managers to approach FDS with this mindset in answer to the Grand Challenge.   
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FDS for nitrite and nutrients in general have made significant and notable advancements 

since the time of Grand Challenge.  Much of this we know thanks to the reports available in 

peer-reviewed journals and conference presentations documenting instrument development and 

performance in actual field deployments.   Of course, for every success story, there are 

deployments that do not go as planned and remain undocumented.  We encourage those 

developing and implementing FDS, the innovators, the visionaries, and early adopters to 

continue to report FDS uses and experiments under all circumstances and operational 

environments to add to our growing body of knowledge on the subject, indeed on the science of 

this technological application.   
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1.5.   Appendix A  

 

Figure A.1.  Keyword search flow chart for literature analysis. Literature searches were 

performed over the period of 2/3/16 to 3/7/16.  
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2.   Chapter II 

Development of a simple and configurable fluidic system for the detection of nitrite in 

aqueous samples 

 

 

Abstract 

 

 

     This work describes the development of an automated detection system for determination 

of nitrite using inexpensive and commercially available components and chemistry.   While 

nitrite analyzers have begun to penetrate markets worldwide, generally speaking they are not 

widely implemented or practically adopted.  We report the design and testing of a prototype 

module that uses a direct and simple measurement method built on proven fluidic injection 

analysis and colorimetric techniques.  The opto-fluidic system demonstrated appreciable 

precision (relative standard deviation <2.0%), sensitivity (limit of detection <0.2 µM NO2
-), and 

linearity (R2=0.999) over a relevant linear range (0-25 µM) in under 30 minutes and for around 

US$1,000.  The system was validated against a US EPA standard method for nitrite on a 

commercial spectrophotometer and autoanalyzer.  The prototype is based on the programmable 

Arduino microcontroller, and is easily configurable for additional sensitivities and colorimetric 

assays.  The analyzer presents potential for use as a low cost, adaptable, and readily accessible 

instrument for unattended monitoring in process control applications such as aquaculture 

operations. 
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2.1.   Introduction 

The automation of analytical methods as chemical ‘Total Analytical Systems’ for point of 

use or in situ detection and quantification of nitrite and other nitrogenous compounds has been 

an active area of research for over 20 years.  The motivations to develop these unattended 

monitoring technologies reside in their potential to obtain high resolution data over prolonged 

periods with a simultaneous reduction in cost of labor and sampling infrastructure (Ho et al., 

2005; Johnson et al., 2007; Prien et al., 2007; Pellerin et al., 2016).  Early innovations focused on 

automated flow injection analysis (FIA) coupled with spectrophotometry packaged in field 

deployable and submersible fit-for purpose research instruments (Daniel et al., 1995; David et 

al., 1998; Byrne et al., 1999; Le Bris et al., 2000; Masserini and Fanning, 2000; Thouron et al., 

2003).  Variations of FIA techniques developed as part of benchtop prototypes (Gabriel et al., 

1998; Greenway et al., 1999; Rocha and Reis, 2000; Petsul et al., 2001; Legnerová et al., 2002; 

Hirata et al., 2003) demonstrated advantages such as improved precision, fast response and low 

reagent consumption and waste generation compared to manual methods.   

More recent advances have integrated fluidic and detection systems into lab on a chip 

devices (da Rocha et al., 2012; Czugala et al., 2013a,b; Horstkotte et al., 2013; Hwang et al., 

2013) that further reduced analysis times and reaction volumes (to µL and nL) and improved 

precision (Ríos et al., 2012; Worsfold et al., 2013; Antony et al., 2014).  These efforts have 

culminated in researchers’ development of sensor packages capable of autonomous operation for 

measurements of nutrients for weeks at a time (Diamond et al., 2011) and tested in real-world 

environments for nitrite/nitrate (Beaton et al., 2011, 2012; Cogan et al., 2015), phosphate (Cleary 

et al., 2008), and ammonia (Cogan et al., 2014).  Some of these systems have broken through the 
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research and development barrier and are entering the market as commercially available high-

frequency analyzers (i.e., APNA, WIZ, NAS-3, EcoLAB).  

 Improvements in developer grade microelectronics have seen a large expansion and 

availability of prototyping tools for embedded systems.  Consumer accessible microcontrollers 

and single board computers such as the Arduino, Raspberry Pi, and BeagleBone have been the 

catalysts for the development and large scale commercialization of an array of microelectronic 

subsystems that include actuators, communications, optoelectronics and data storage.  In addition 

to this inexpensive and often open source hardware, a large crowd-sourced and on-line user base 

and support network exists that enables a bottom-up development approach (Hagel et al., 2010).  

For research applications this provides individual scientists the ability to rapidly design, build, 

and test devices without the complete reliance on scientific instrument manufacturers or 

application engineers (Von Hippel, 2005).  

 While the application of microfluidic and lab on chip technologies represents the current 

trend and gold standard in the automation of analytical chemistries, their fabrication is reliant on 

specialized equipment that is out of the reach of many laboratories.  Additionally, once 

manufactured, many of these devices are not easily configured for applications other than their 

intended purpose and still require a degree of modularity for real world application (Campos and 

da Silva, 2013).  Here we report the development of a readily configurable opto-fluidic system 

that uses primarily off-the-shelf, low cost components and demonstrate its use as an automated 

chemical sensor for nitrite.  All components are readily replaceable, which offers the advantage 

of enabling the user to clean or replace components if they become fouled or contaminated.   

Additionally, components can be easily interchanged for applications that require increased 

chemical compatibility or reaction sensitivity.  As the control electronics are based on an open 
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source Arduino microcontroller, software can be readily developed for alternative applications.  

These system attributes are particularly beneficial for rapidly developing automated analytical 

assays in a research environment, while maintaining a simple fluidic design enables end users 

with minimal training to operate and maintain the instrument.    

 The aim of this study was to develop an inexpensive, easy to use automated system for 

nitrite analysis that could be applied as a process control tool in the aquaculture industry, where     

incomplete oxidation of ammonia from fish waste or excess food can lead to elevated nitrite 

levels and can cause methaemoglobinemia, or ‘brown blood disease’ (Durborow et al., 1997; 

Buttner et al., 1993; Kroupova et al., 2005).  Traditional bench top assays and semi-quantitative 

tests (e.g., test strips and color comparators) remain the most heavily relied on methods in the 

aquaculture industry for nitrite monitoring, though use of FIA and automated sensors for 

aquaculture management has been supported for some time (Ariza et al., 1992; Fowler et al., 

1994; Badiola et al., 2012).  Multiple test kits (e.g., Hach, Api, LaMotte, etc.) for nitrite are 

commercially available; however, their accuracy and sensitivity may be severely compromised 

due to inter-user variability and the semi-quantitative nature of the tests (Ormaza-González and 

Villalba-Flor, 1994).   Simplified portable and handheld spectrophotometers quantify 

concentration more accurately than test strips and test kits, but still require analyst operation to 

retrieve samples and to operate, clean, and calibrate instrumentation.   

Currently there are excellent examples of automated nitrite analyzers for use in the 

environment (Egli et al., 2009; Gilbert et al., 2013; Bodini et al, 2015; Yucel et al., 2015), along 

with significant challenges and adjustments for size, power, storage, and ruggedness 

requirements for prolonged deployment in real world conditions (Campos and da Silva, 2013).  

A sensor targeted for use in an application such as aquaculture can utilize the concepts proven by 
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such instrumentation, and benefit from a more controlled setting with considerably less demands 

for analytical operation, maintenance, and cost.  This study investigates design and performance 

considerations, including the assessment of a number of commercially available reagents, for a 

simple, automated, and inexpensive system capable of producing nitrite measurements with 

relevant sensitivity for an aquaculture setting.    

 

2.2.   Experimental  

2.2.1.   Reagent and standard preparation  

 The Griess reagent was prepared according to the American Public Health Association 

(APHA) standard method 4500 NO2
- B (Eaton et al., 2005) with analytical grade chemicals and 

type 1 ultra-pure water (18.2 MΩ-cm resistivity, ELGA, USA).  Commercial nitrite reagents 

were purchased as part of off-the-shelf test kits (Table 4) and used in accordance with the 

manufacturers’ instructions.   The manufacturers of the API and ELOS reagent solutions did not 

disclose peak absorbance wavelengths, so both chemistries were tested by scanning absorbance 

across the visible spectrum (400-700 nm) up to concentrations of 10 µM NO2
- (Figures B.1a, b 

and B.2a,b in Appendix B).   

 Nitrite standards used for general instrument development were created by dissolving 6.9 

g of sodium nitrite (Sigma-Aldrich, USA) into 1 L of type 1 ultra-pure water.  The 100 mM stock 

solution was diluted further with ultra-pure water to create standards for testing absorbance 

measurements.  Additional nitrite standards used for standard curve construction, reagent shelf 

life, and instrument validation procedures were prepared by serially diluting a 1,000 ppm (0.02 

M) certified concentrated stock solution (Fisher Scientific, USA) with ultra-pure water in 100 

mL volumetric flasks.  For shelf life experiments, nitrite standards ranging from 0.25 – 25 μM 
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were prepared on the day of analysis from a 100 mM stock solution stored in an amber glass 

bottle at 4°C.  A pre-mixed solution of Molecular Probes Griess reagents A and B was prepared 

in 1:1 v/v ratios according to the manufacturer’s instructions and stored at room temperature in 

the dark for the course of the shelf life experiment.  At weekly intervals, the pre-mixed 

Molecular Probes’ reagent was compared to reagent stored according to the manufacturer’s 

instructions using the Molecular Probes’ spectrophotometric method on a Perkin Elmer Lambda 

25 spectrophotometer (5 cm cuvette).  During prototype testing, nitrite standards and reagents 

were stored in 50 mL Falcon polypropylene centrifuge tubes (Corning, USA), and 1.5 mL 

polypropylene microcentrifuge tubes (Fisher Scientific, USA) respectively.   

 

2.2.2.   Instrument design  

2.2.2.1.   Optical detection system 

Measurement of nitrite was based on the relation of light absorbance to reacted Greiss 

reagent described by the Beer-Lambert law (Equation 1).  Absorbance can be measured as the 

base 10 log of inverse light transmission (Equation 2), and exhibits a positive linear relationship 

with increasing concentration.  

 

𝑨𝑨 =  𝜺𝜺𝜺𝜺𝜺𝜺               where:       𝑨𝑨 = Absorbance; 𝜺𝜺 = Molar absorptivity  

                                   𝜺𝜺 = Pathlength;  𝜺𝜺 = Concentration   Eq. 1.  

𝑨𝑨 = 𝒍𝒍𝒍𝒍𝒍𝒍𝟏𝟏𝟎𝟎
𝑷𝑷
𝑷𝑷𝟎𝟎

             where:       𝑷𝑷𝟎𝟎 = Radiant power from the source       

                                   𝑷𝑷 = Radiant power transmitted by the sample     Eq. 2. 

     

 Radiant power ( 𝑷𝑷𝟎𝟎) was supplied by a Super Bright Green LED (Kingbright, UK) with a 

peak wavelength at 526 nm and a spectral half-width of 30 nm.  The LED was driven by a 20 

mA constant current.   Light intensity was detected using a TCS3200-DB light-to-frequency 
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Color Sensor Module (Parallax, USA) that consisted of an 8x8 photodiode array comprised of 

sets of 16 evenly distributed photodiodes each with a red, green, blue filter or unfiltered (clear) 

and a collimating lens to focus incoming light onto the detector array.  For nitrite analysis, the 

output from the color sensor’s green channel (~525 nM) was used to measure the peak 

absorbance wavelength of nitrite/reagent compound.  All light readings were detected using 

100% gain and an integration time of 500 ms.  

The optical module consisted of interchangeable 10, 20 or 50 mm path length PEEK flow 

cells (FIALabs, USA).  The LED and color sensor were secured onto the flow-cell optical ports 

using custom fabricated PVC adapters.  Fluidic ports on the flow cells were fitted with 1/4”-28 

UNF polypropylene adapters with 1/8” barbs (Eldon James, USA). The Z-style flow-cells were 

mounted with optical paths at an upward angle to help air bubbles escape. 

 

2.2.2.2. Fluidic system and hydraulic control 

The fluidic system was configured as a reverse flow injection analyzer (rFIA) and used a 

multicommutation approach to draw sample, inject reagent, mix, and move fluid through the 

flow-cell detector and out to waste (Figure 6a).  Fluids were pumped with a speed-variable and 

reverse- flow enabled peristaltic pump driven by a 12 VDC, 150 mA, brush motor (APT 

Instruments, USA) and pulled through an upstream flow network constructed of 3 miniature 3-

way switching miniature solenoid valves (Parker Hargraves, USA) that were actuated 

sequentially in a distributer mode to pass fluids (Figure 6a).  The fluidic manifold was 

constructed of 1/8” [3.18 mm] ID Flexelene 135C FLXC1-2 tubing (Eldon James, USA) in a 

serpentine fashion to the flow-cell and out to the pump /waste (Figure 5).  To enable the 

measurement of pump head rotations, 3 neodymium magnets were glued into existing holes in 
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the pump head assembly and a Honeywell SS315AT Hall Effect sensor was glued to the pump 

exterior.  Calibration of pumped volumes was performed by taking the difference of mass (mg) 

of Type 1 water or reagent in a glass beaker before and after withdrawing either a.) A specified 

number of one-third pump roller rotations or b.) A specified number of milliseconds.  The 

benchtop system was integrated into a custom platform built with 0.25 mm thick PVC sheets.  

 

 

 

 

 

 

 

 

 

 

Figure 5.  Illustration of prototype fluidic module.  A. 3-way miniature solenoid valve array.  

B. Color sensor  C. Flow-cell.   D. Green LED  E. Peristaltic pump.   

 

2.2.2.3.   Control electronics  

The system was controlled by an Arduino Mega 2560 microcontroller.  A custom 

designed and commercially available PCB board (ABL Controls, USA) was used to interface the 

5 VDC logic of the microcontroller with the instruments’ 12 VDC fluidic systems. The interface 

board contained a dual full bridge driver (STMicroelectronics, Switzerland) to enable forward 

and reverse actuation of the pump.  Quadruple half bridge drivers (Texas Instruments, USA)  

A 

B 

C 

D 
E 

To waste 
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  Figure 6. Instrument schematic. a. Hydraulic circuit diagram.  b. Electronic block diagram. 

 

were used for solenoid valve actuation.  A DS1307 Real Time Clock performed time keeping.  

Circuit design for the system is shown in figure 6b.  Power was supplied to the system using a 

110 VAC to 12 VDC “wall wart” style power pack.  Control software for the instrument was 

a. 

b. 



www.manaraa.com

 

64 
 

written in the Arduino Integrated Development Environment (IDE).  The calculation of sensor 

readings’ mean and standard deviation was performed by the software as a data quality check. 

This information was used to flag readings that fell outside the range of statistical significance 

(>99.5% confidence).  For nitrite measurements using the prototype detector, data was output 

through the Arduino IDE serial monitor as comma separated values and analyzed using 

Microsoft Excel.  

 

2.2.2.4.   Instrument automation 

The analysis cycle was initiated by first rinsing the system with 3 alternating ~300 µL 

plugs of DI water and air (‘Clean System,’ Figure 7).  The system was then flushed with ambient 

sample water. During this time, 45 discrete light intensity readings on the sample plug were 

taken and averaged to serve as 𝑷𝑷𝟎𝟎 (Equation 2) in the calculation for the transmission. The 

sample water was then displaced by a small plug of air before a further 1 mL volume of the 

sample was introduced into the system. As the sample moved through the valve array, 15 µL of 

Griess reagent was injected into the middle of the passing sample stream (Figure 7).  Passive 

mixing of the sample and reagent was achieved through the fluidic path by using tubing bends 

and changes in orifice sizes across the valve ports, fluidic adapters, and flow-cell channel.   
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Figure 7.  Process flow diagram. A sample plug is pumped to the flow-cell, where light 
intensity is measured (Read Ambient Sample) and serves as 𝑷𝑷𝟎𝟎.  After reagent injection and 
color development, light intensity is measured (Read Analyzed Sample) and serves as 𝑷𝑷.   
 

 

Active mixing was also performed by the pulsation effect from the peristaltic pump and 

by varying the pump’s speed and direction (Hessel et al., 2005; Miro and Frenzel, 2004).  After 

20 minutes incubation time, the reaction plug was moved in and out the flow-cell 6 times at 70% 

of full pump speed, and resulting light intensity was measured and averaged over 15 readings 

that served as the final light transmission (𝑷𝑷) (n = 90, Figure 7).  Absorbance was then calculated 

by the system using Equation 2.   
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2.3.   Results and discussion 

2.3.1.   Reagent analysis 

2.3.1.1.   Reagent comparison 

We assessed 4 commercially available nitrite chemistries (Table 4) for their ability to be 

integrated into an automated nitrite analyzer.  Key considerations for this analysis were: 

1) Potential for each method to be automated (e.g., liquid vs powdered reagents, number of 

reagents and fluidic manipulations); 2) Analytical performance (e.g., reaction time, correlation to 

standard methods); 3) Shelf life and storage considerations (e.g., refrigeration requirements, 

toxicity); 4) Commercial availability and cost per sample. The standard method using the APHA 

Griess reagent offered the highest sensitivity among the tested reagents with a calculated molar 

extinction coefficient (Ɛ) of 40,200 M-1 cm-1 (~ 87% of the theoretical Ɛ) (Hansen and Koroleff, 

1999).  Analytical performance of the commercially available reagents was also compared to this 

theoretical Ɛ value and ranked according to performance (Table 4).  A theoretical Ɛ value for the 

ELOS test kit could not be calculated, as its response was not linear across a single peak 

absorption wavelength (Figure B.1a in Appendix B).  The Hach NitriVer3 low-range nitrite 

reagent showed good sensitivity based on its molar extinction coefficient, however as it was 

composed of a powder that needed to be re-suspended before use it was deemed unsuitable for 

the proposed automated instrument and was not selected for further analysis. 
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Table 4:  Comparison of commercially available nitrite reagents. 

 

a. Hansen & Koroleff (1999). 
b. Ormaza-Gonzalez & Villalba-Flor (1994). 
c. Product # 2107169 (Hach, USA). 
d. Eaton et al., 2005 
e. Product # G-7921 (Molecular Probes, USA). 
f. Product # 3317 (Mars Fishcare, USA). 
g. Product # ELNO2 (ELOS, Italy). 

*(with dilution in 1 cm cuvette) 
**FIA method 
ppm as NO2

- ion 
 

 

The Molecular Probes Griess kit is provided as a 2 reagent system and also contains a 1 

mM sodium nitrite solution.  Equal volumes of reagent A (N-(1-naphthyl)ethylenediamine 

dihydrochloride) and reagent B (sulfanilic acid) were mixed to form the Griess reagent.  The 

Molecular Probes reagent was chosen as the highest rated chemistry because of its sensitivity, 

large linear range, and comparable price point per sample especially considering the small 

Protocol Ɛ (M-1 cm-1) λ 
(nm) 

Incubation 
Time (min) Linear Range 

Cost/ 
sample 
(USD) 

No. 
Reagents 

Theoretical 
Griess 
assaya 

~46,000a 540 20/1** 0-10 µM                    
[0-0.46 ppm] -- 3 

 
APHA 

Standard 
Methodd  

40,200 543 10 0.7-71* µM                 
[0.03-3.2 ppm] $0.07 3 

Molecular 
Probese 34,600 548 30 1-100* µM            

[0.05-4.60 ppm] 
$0.26/ 
$0.05 2 

APIf 16,400 550 5 0-108 µM                 
[0-5 ppm] $0.05 1 

ELOSg NA NA 10 0-43 µM                   
[0-2 ppm] $0.40 1 

Hach                ~29,900b 540 20 0-36 µM                    
[0-1.64 ppm] $0.37c 1 
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volumes required for its microplate assay ($0.05 / sample). The API reagent was rated highest 

for simplicity and ease of use (1 liquid reagent, 5 minute incubation time, shelf life listed as 

expiration date on bottle, low cost.   

 
 
 2.3.1.2.   Reagent shelf life 

The Molecular Probes Griess reagent, chosen as the highest rated test kit, was tested for 

application in prolonged unattended deployments with a shelf life test.  Previous work reports 

that APHA Griess reagent pre-mixed and stored in the dark is stable about 5 days (Hansen and 

Koroleff, 1999) and a month when refrigerated (Eaton et al., 2005).  A shelf life experiment was 

conducted to test the effectiveness of the Molecular Probes’ Griess reagent over time by 

comparing the absorbance readings of nitrite standards with shelved, pre-mixed reagent (stored 

at room temperature in the dark) against the absorbance readings of nitrite standards mixed with 

freshly-made reagent.   

The results suggest a 3-4 week approximate shelf life before the mixed reagent loses 

appreciable sensitivity (Figure 8a).  After week 5, the calibration curve slope (0-10 μM NO2
-) of 

the shelved Griess reagent fell outside the range of the mean slope value of the fresh reagent 

(>99% confidence).  Beginning at week 4, the signal value of the standards mixed with shelved 

reagent fell by over 5% (Figure 8b) from the signal produced with the fresh reagents, with the 

low standards (0.25, 0.5, 1.0 μM) dropping at a higher percentage than the high standards (5,10, 

25 μM) (Figure B.3 in Appendix B).   The shelved reagent showed good linearity through 9 

weeks with an average R2 of 0.9993 (Figure 8b). 
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Weeks 
Shelved 

Average Signal 
Difference (%) 

Linearity 
(R2) 

1 1.1 0.9995 
2 1.3 0.9996 
3 1.4 0.9986 
4 6.6 0.9988 
5 15.7 0.9995 
7 7.9 0.9997 
8 14 0.9988 
9 20.8 0.9997 

 
 
 

 
Figure 8. Shelf life testing of Molecular Probes Griess reagent. a. Plot of weekly comparisons 
of calibration curve slopes using shelved and fresh reagents. b. Tabulated results.  
 
 
 
 
 
 
 
 
 

a. 

b. 



www.manaraa.com

 

70 
 

2.3.2.   Instrument performance I 

2.3.2.1.   Detection system  

Coordinating detector spectral response with emitter peak wavelength has been reported 

to increase analytical sensitivity (Sieben et al., 2010; Ahn et al., 2015).  This effect proved to 

offer greater sensitivity in the prototype sensor by combining the green LED with green optical 

filter on the TAOS color sensor.  At 540 nm, the spectral response of the TAOS color sensor was 

highest in the clear (unfiltered) channel, followed by the green, blue, and red channels.  The 

green channel proved to offer the most distinction between a blank reading and a spiked reading, 

with a difference of 25 standard deviations between the average readings of the blank and the 

sample (n = 12), followed by the clear channel with over 6 standard deviations, the blue channel 

with 4 standard deviations, and the red channel with less than 1 standard deviation difference 

(Figure B.4 in Appendix B).  Systematic errors outside the signal deviation threshold were 

attributed to air bubble formation in the optical pathway, one of the most common and 

significant interferences in wet chemistry fluidics (Worsfold et al., 2013).  Air bubbles decreased 

the light intensity reaching the light sensor, lowering the signal beyond the range of error 

attributed to random noise.  Such a signal was used as both a quality control parameter and as a 

control indicator by signifying the passing and approaching of sample plugs. 

 

 2.3.2.2.   Fluidics 

Pump calibration proved to be linear using the millisecond counter (R2 = 0.999) over a 

range of 40 to 1,000 milliseconds (Figure B.6b in Appendix B).  The pump head rotations 

tracked using magnets and the Hall-effect sensor were used to calibrate solenoid actuation and 

allowed for approximately 30 µL of reagent to be injected into the near center of a passing 
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sample plug of 1 mL volume during the automated procedure.  By synchronizing sampling and 

injection cycles with the pulsation timing and duration of pump operation, precise volumes of 

reagent and sample were achieved (+/- approximately 2 µL, Table B.2 in Appendix B) at a 

maximum flow rate of approximately 35 µL/sec, or 2.1 mL/min.  After 20 minutes of mixing and 

incubation time, the light transmission of the reaction was stable and had reached absorbance 

values at 99% of the transmission at 30 minutes, revealing satisfactory mixing levels for the time 

frame (Figure B.7a, b in Appendix B).   The fluidics of the system enabled mixing and consistent 

flow with a relatively simple approach that was based on rFIA, whose characteristics include a 

laminar flow pattern, merged mixing zones, and direct injection of reagent into the sample 

(Zagatto et al., 2012).  Additionally, automation of fluidic handling was made possible through 

the multicommutation of compact and lightweight solenoid valves (8 mm width), an approach 

proven to aid in instrument miniaturization, portability, sampling throughput, measurement 

selectivity and repeatability, and decreased reagent consumption (Rocha and Reis, 2000; Feres 

and Reis 2005; Ródenas-Torralba et al., 2006; Melchert et al., 2007; Morales-Rubio et al 2009).  

 

2.3.3.   Instrument performance II   

2.3.3.1.   Calibration 

The detection system was initially tested using FD&C red food dye no. 3 as proxy for the 

Griess reagent and demonstrated the ability of the system to operate as a chemical colorimeter 

with a high degree of linearity (R2 = 0.997) and precision (relative standard deviation (RSD) = 

0.1%) (Figure B.8 in Appendix B) at concentrations comparable to previous studies (Sieben et 

al., 2010; Bui and Hauser, 2015).  After the food dye test, standard curves were constructed 

using nitrite standards ranging from 0.25 - 25 µM for both 5 cm and 2 cm flow-cells.  Light 
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transmission among the standard solutions exhibited an exponential decrease, following the 

Beer-Lambert law (Figure 9a).  Transmission was converted to absorbance using equation 2.   

Calibration using nitrite standards demonstrated the method’s high degree of linearity and 

dynamic range without dilution up to 25 µM (Figure 9c). 

Accurate detection depended on the establishment of a proper reading of ambient sample 

( 𝑷𝑷𝟎𝟎) water to compare sample absorbance readings against (Figure 7).  A working average RSD 

of 0.1% over 121 separate blanks in 9 separate calibration tests established a consistent baseline 

towards a precise absorbance measurement.  Carryover between standards was effectively 

eliminated by the module’s rinse cycle, and the average recovery to a blank signal was greater 

than 99% (n = 95).   
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Figure 9.   Calibration plot using 20 mm flow-cell and Molecular Probes reagent. a. Light 
intensity readings of ambient sample (𝑷𝑷𝟎𝟎) and analyzed sample (𝑷𝑷). b. Expanded view of low 
range standards transmission plot. c.  Resulting absorbance 
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 2.3.3.2.   Limit of detection  

The sensitivity and repeatability of the instrument was determined under a fully 

automated analysis routine that used nitrite standards ranging from 0.25 – 25 μM and a 2 cm 

pathlength PEEK flow-cell.  A total of 5 replicates for each standard were performed, with each 

standard manually switched out before introduction of the next standard solution.   Instrument 

sensitivity is limited by both the slope of the analytical curve and the reproducibility of the signal 

measurement (Skogerboe and Grant, 1970).  The precision of prototype nitrite sensor depended 

on its ability to consistently account for air bubbles or other optical interferences, inject precise 

volumes, mix and manipulate the sample plug, and finally detect light transmission.  The average 

inter-assay reproducibility produced a RSD of 1.4%, and an average intra-assay repeatability of 

2.5% (n=30).  The precision resulted in a minimum detectable signal of 0.01 absorbance units 

(n=30), calculated as 3 times the standard deviation of the blank added to the mean blank signal.  

When related to the calibration curve equation, the minimum detectable signal yielded a limit of 

detection of 0.18 μM (Figure 10a, b).  
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Figure 10. Instrument precision of prototype nitrite analyzer.  a. 5x replicate standard curve 
(error bars as 3x standard deviation) b.  Expanded view of low range standards 
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2.3.3.3.   Method robustness 

To test the ruggedness of the automated analytical process using the prototype system, 

over 100 absorbance measurements of nitrite standards were used to construct a calibration curve 

with confidence and prediction intervals (Figure 11).  The measurements (n=105) were taken 

over 10 separate tests on different days, with standards (n=10, 0-25 µM) from various serial 

dilutions and stocks, with multiple Molecular Probes Griess reagents from varying storage 

conditions (e.g., stored premixed and at room temperature for up to 2 weeks, or stored separately 

at 4°C), and under small procedural differences with slight variations in instrument software and 

physical configuration (i.e., replacement of tubing, valves).   

 

  

  

 

 

 

 

 

 

 

 
 
Figure 11.  Global calibration curve.  Plot of calibration curve made of absorbance 
measurements (n=105) using prototype nitrite sensor (2 cm flow-cell).   
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The nitrite standards’ signals were unaffected by these changes and fell within the 95% 

prediction interval from 0-10 µM; at concentrations greater than 10 µM, the precision suffered 

(Figure 11).  This result is to be expected as literature values report the linear range of the Griess 

assay to be near 10 µM with a 2 cm pathlength (Hansen and Koroleff, 1999, Eaton et al., 2005).  

The resulting calibration curve demonstrated the method’s overall robustness and could be 

applied to calculate concentrations from absorbance measurements in prolonged and unattended 

operation.  

 

2.3.3.4.   Instrument comparison and validation 

 The module was compared to conventional methods and instrumentation by analyzing the 

same set of nitrite standards (0 – 10 µM) on a SEAL AA3 autoanalyzer and a Perkin Elmer 

Lambda 25 spectrophotometer.  The Molecular Probes’ manual method on the Perkin Elmer with 

a 2 cm cuvette was used as the reference method for comparison, and the prototype nitrite sensor 

produced a slope at 89% of the reference method’s calibration curve slope (Figure 12a, b).  The 

SEAL’s sensitivity differed fundamentally from both the reference method and the prototype 

sensor because of a 1 cm cuvette pathlength that is used in the system; additionally, the Griess 

reagent was made according to the APHA standard method.   

The prototype system also demonstrated a high degree of linearity and low level of 

variance comparable to the reference method and the autoanalyzer.  The average inter-assay 

precision percentage for the nitrite sensor was an order of magnitude greater than the reference 

method (Figure 12b).  
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 Perkin Elmer 
Spec. SEAL AA3 Prototype 

Nitrite Sensor  
Slope 0.06190 0.02010 0.05510 
Linearity (R2) 0.99996 0.99998 0.99979 
Residual Stdev. (AU) 0.00194 0.01094 0.00390 
Slope Stdev. 0.00023 0.00131 0.00047 
Avg. precision as signal RSD (n=5) 0.4% 2.3% 5.5% 
Avg. precision as conc. (n=5) ±0.013 µM ±0.084 µM ±0.14 µM 

 
Figure 12.  Instrument comparison results. a. Plot of calibration curves (error bars  
as standard deviation, n=5). b. Tabulated results showing comparative performance of each 
instrument.  

 
The accuracy of the instrument was validated against a Perkin Elmer Lambda 25 

spectrophotometer (as the reference method) and the SEAL with recirculating aquaculture 

system (RAS) rearing tank water (Table 5).  The samples were taken from a RAS whose 

biological filter is periodically backflushed into the tank, which causes a temporary increase in 

nitrite level.  Three samples were tested – one before the backflush to represent typical operating 

conditions, one 45 minutes after, and one 165 minutes after.  The post-backflush samples were 

a. 

b. 
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filtered through 0.2 µm pore glass fiber filters and diluted with type 1 water at a 1:100 ratio.  The 

samples were analyzed on the nitrite sensor using a 5 cm flow-cell and quantified using a global 

calibration curve recorded with nitrite standards ranging from 0.1 to 2 µM from 5 calibration 

curve data sets.  The results revealed an average absolute difference of 1.9 µM between the 

prototype nitrite sensor and the Perkin Elmer (reference method), a 3.3 µM average absolute 

difference between the SEAL and the Perkin Elmer, and a 2.5 µM average absolute difference 

between the nitrite sensor and the SEAL (Table 5).      

 
 

 Table 5. Instrument comparison.  RAS tank water tested on 3 different systems. 
 

 
Perkin Elmer 

Spec. SEAL AA3 Nitrite sensor  

Sample Conc.^ (µM)  Conc.^ (µM)  Conc.^ (µM)  
    
RAS 45 min after 
backflush 

33.44 ±  
0.07 

31.39 ± 
1.98 

29.78 ± 
0.04 

    
RAS 165 min after 
backflush 

18.36 ± 
0.07 

14.05 ± 
1.92 

16.88 ± 
0.04 

    
RAS Pre-backflush 0.43 ± 

0.07 
1.93 ± 
1.91 

0.92 ± 
0.04 

    
 
 

2.3.4.   Conclusion  

The analytical process of the automated nitrite sensor has demonstrated the ability to 

detect and determine nitrite levels below 0.2 µM, with a linear range up to 25 µM and within 

10% accuracy at micro-molar concentrations.  The method was also relatively simple and low-

cost relative to the reference methods, and reduced the complexity and components required of a 

simultaneous double-beam method.  Additionally, the detection of light transmission of the blank 

served to correct for any background turbidity or other potentially interfering matrix effects.   
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The modular nature of the sensor package allowed for switching out of flow-cells and 

reagents for desired sensitivity and prolonged reagent shelf life, and featured a design with 

potential for other colorimetric assays to be carried out within the same manifold setup.  Initial 

reagent results suggest that aquaculture technicians can mix the Molecular Probes’ reagents at a 

1:1 ratio and deploy for over 2 weeks, with each sample requiring less than 50 µL.  The nitrite 

standard in the Molecular Probes’ test kit also offers the potential for further development of 

automated calibration check protocols.   With the exception of the PVC chassis and optical 

adapters for the RGB detector and LED, all components are commercially available and can be 

made and operated with off-the-shelf components at less than US$1,000.    

The Arduino microcontroller has provided capabilities for complete automation and 

control through a user-driven interface with programmable sampling intervals, volumes, and 

operation cycles. Furthermore, the module can be further enhanced by integrating additional 

components with the Arduino microcontroller.   The prototype system approaches the analytical 

merit necessary for scientific analysis, is easily accessible for technicians, and has potential for 

use as a process control tool in industrial aquaculture systems.   

 

 

 

 

 

 

 

  



www.manaraa.com

 

81 
 

2.4.   References 

 
 
1.) Ahn, J. H., Jo, K. H., & Hahn, J. H. (2015). Standard addition/absorption detection  

microfluidic system for salt error-free nitrite determination. Analytica Chimica 
Acta, 886, 114-122. 

 
2.) Antony, R., Nandagopal, M. G., Sreekumar, N., & Selvaraju, N. (2014). Detection  

 principles and development of microfluidic sensors in the last 
decade. Microsystem Technologies, 20(6), 1051-1061. 

 
3.) Ariza, A. C., Linares, P., de Castro, M. D., & Valcarcel, M. (1992). Flow-injection  

 analysis for on-line monitoring of nutrients (ammonia and nitrite) in 
aquaculture. Journal of Analytical Methods in Chemistry, 14(5), 181-183. 

 
4.) Badiola, M., Mendiola, D., & Bostock, J. (2012). Recirculating Aquaculture Systems  

(RAS) analysis: Main issues on management and future challenges. Aquacultural 
Engineering, 51, 26-35. 

 
5.) Beaton, A. D., Sieben, V. J., Floquet, C. F., Waugh, E. M., Bey, S. A. K., Ogilvie, I. R.G,  

 Mowlem, M.C., & Morgan, H. (2011). An automated microfluidic colourimetric 
sensor applied in situ to determine nitrite concentration. Sensors and Actuators B: 
Chemical, 156(2), 1009-1014. 

 
6.) Beaton, A. D., Cardwell, C. L., Thomas, R. S., Sieben, V. J., Legiret, F. E., Waugh, E.M.,  

Statham, P.J., Mowlem, M.C., & Morgan, H. (2012). Lab-on-chip measurement 
of nitrate and nitrite for in situ analysis of natural waters. Environmental Science 
& Technology, 46(17), 9548-9556. 

 
7.) Bodini, S., Sanfilippo, L., Savino, E., & Moscetta, P. (2015, May). Automated micro  

Loop Flow Reactor technology to measure nutrients in coastal water: State of the 
art and field application. In Proceedings of OCEANS 2015-Genova (pp. 1-7). 
IEEE. 

 
8.) Bui, D. A., & Hauser, P. C. (2015). Analytical devices based on light-emitting diodes–a  

review of the state-of-the-art. Analytica Chimica Acta, 853, 46-58. 
 
9.) Buttner, J. K., Soderberg, R.W., & Terlizzi, D.E. (1993). Introduction to water chemistry   

in freshwater aquaculture. NRAC Fact Sheet No. 170-1993, Northeastern 
Regional Aquaculture Center, University of Massachusetts Dartmouth.   

 
10.) Byrne, R., Kaltenbacher, E., & Waterbury, R. (1999). Autonomous in-situ analysis of the  

upper ocean. Sea Technology, 40(2), 71-75. 
 

 



www.manaraa.com

 

82 
 

11.) Campos, C. D., & da Silva, J. A. (2013). Applications of autonomous microfluidic  
systems in environmental monitoring. RSC Advances, 3(40), 18216-18227. 
 

12.) Cleary, J., Slater, C., McGraw, C., & Diamond, D. (2008). An autonomous microfluidic  
sensor for phosphate: On-site analysis of treated wastewater. IEEE Sensors 
Journal, 8(5), 508-515. 

 
13.) Cogan, D., Collins, F., Meagher, K., Cleary, J., Phelan, T., & Diamond, D. (2013).  

Strategies for realizing long-term autonomous chemical sensing devices. In 
Proceedings of SENSORDEVICES 2013: The Fourth International Conference on 
Sensor Device Technologies and Applications, Barcelona, Spain. 

 
14) Cogan, D., Cleary, J., Fay, C., Rickard, A., Jankowski, K., Phelan, T., Bowkett, M., &  

Diamond, D. (2014). The development of an autonomous sensing platform for the 
monitoring of ammonia in water using a simplified Berthelot method. Analytical 
Methods, 6(19), 7606-7614. 

 
15.) Cogan, D., Fay, C., Boyle, D., Osborne, C., Kent, N., Cleary, J., & Diamond, D. (2015).  

Development of a low cost microfluidic sensor for the direct determination of 
nitrate using chromotropic acid in natural waters. Analytical Methods, 7(13), 
5396-5405. 

  
16.) Czugala, M., Fay, C., O'Connor, N. E., Corcoran, B., Benito-Lopez, F., & Diamond, D.  

(2013a). Portable integrated microfluidic analytical platform for the monitoring 
and detection of nitrite. Talanta, 116, 997-1004. 
 

17.) Czugala, M., Maher, D., Collins, F., Burger, R., Hopfgartner, F., Yang, Y., Zhaou, J.,  
Ducrée, J., Smeaton, A., Fraser, K.J., & Benito-Lopez, F. (2013b). CMAS: fully 
integrated portable centrifugal microfluidic analysis system for on-site 
colorimetric analysis. RSC Advances, 3(36), 15928-15938. 
 

18.) da Rocha, Z. M., Martinez-Cisneros, C. S., Seabra, A. C., Valdés, F., Gongora-Rubio, M.  
R., & Alonso-Chamarro, J. (2012). Compact and autonomous multiwavelength 
microanalyzer for in-line and in situ colorimetric determinations. Lab on a Chip, 
12(1), 109-117. 
 

19.) Daniel, A., Birot, D., Blain, S., Tréguer, P., Leïldé, B., & Menut, E. (1995). A  
submersible flow-injection analyzer for the in-situ determination of nitrite and 
nitrate in coastal waters. Marine Chemistry, 51(1), 67-77. 

 
20.) David, A. R., McCormack, T., Morris, A. W., & Worsfold, P. J. (1998). A submersible  

flow injection-based sensor for the determination of total oxidised nitrogen in 
coastal waters. Analytica Chimica Acta, 361(1), 63-72. 

 
 
 



www.manaraa.com

 

83 
 

21.) Diamond, D., Cleary, J., Maher, D., Kim, J., & Lau, K. T. (2011). Autonomous analyser  
platforms for remote monitoring of water quality. In Proceedings of IECON 2011-
37th Annual Conference on IEEE Industrial Electronics Society (pp. 3516-3521). 
IEEE. 

 
22.) Durborow, R. M., Crosby, D. M., & Brunson, M. W. (1997). Nitrite in fish ponds.  

Southern Regional Aquaculture Center. 
 
23.) Eaton, A. D., Clesceri, L. S., Greenberg, A. E., Franson, M. A. H., American Public  

Health Association. American Water Works Association and Water Environment 
Federation. (2005). Standard methods for the examination of water and 
wastewater. Washington, DC: American Public Health Association. 

 
24.) Egli, P. J., Veitch, S. P., & Hanson, A. K. (2009). Sustained, autonomous  

coastal nutrient observations aboard moorings and vertical profilers. 
In Proceedings of OCEANS 2009, MTS/IEEE Biloxi (pp. 1-9). IEEE. 

 
25.) Feres, M. A., & Reis, B. F. (2005). A downsized flow set up based on multicommutation  

for the sequential photometric determination of iron (II)/iron (III) and 
nitrite/nitrate in surface water. Talanta, 68(2), 422-428. 
 

26.) Fowler, P., Baird, D., Bucklin, R., Yerlan, S., Watson, C., & Chapman, F. (1994).  
Microcontrollers in recirculating aquaculture systems. University of Florida, EES-
326. 

 
27.) Gabriel, D., Baeza, J., Valero, F., & Lafuente, J. (1998). A novel FIA configuration for  

the simultaneous determination of nitrate and nitrite and its use for monitoring an 
urban waste water treatment plant based on N/D criteria. Analytica Chimica 
Acta, 359(1), 173-183. 

 
28.) Gilbert, M., Needoba, J., Koch, C., Barnard, A., & Baptista, A. (2013). Nutrient loading  

and transformations in the Columbia River Estuary determined by high-resolution 
in situ sensors. Estuaries and Coasts, 36(4), 708-727. 

 
29.) Greenway, G. M., Haswell, S. J., & Petsul, P. H. (1999). Characterization of a micro-total  

analytical system for the determination of nitrite with spectrophotometric 
detection. Analytica Chimica Acta, 387(1), 1-10. 

 
30.) Hagel III, J., Brown, J.S., & Davison, L. (2010). From do it yourself to do it together.  

Harvard Business Review, February, 2010.  
 
31.) Hansen, H.P., & Koroleff, F. (1999). Determination of nutrients. In K. Grasshoff, K.  

Kremling, & M. Ehrhardt  (Eds.), Methods of seawater analysis (3rd ed.).  (pp. 
159-228).  Germany: Wiley-VCH Verlag GmbH.  
 
 



www.manaraa.com

 

84 
 

32.) Hessel, V., Löwe, H., & Schönfeld, F. (2005). Micromixers - a review on passive and  
active mixing principles. Chemical Engineering Science, 60(8), 2479-2501. 

 
33.) Hirata, S., Amma, B. V., Karthikeyan, S., & Toda, K. (2003). Determination of nitrite by  

flow injection spectrophotometry using a home-made flow cell 
detector. Analytical Sciences, 19(12), 1687-1689. 
 

34.) Ho, C. K., Robinson, A., Miller, D. R., & Davis, M. J. (2005). Overview of sensors and  
needs for environmental monitoring. Sensors, 5(1), 4-37. 

 
35.) Horstkotte, B., Duarte, C. M., & Cerdà, V. (2013). Chip-on-valve concept: An integrated  

platform for multisyringe flow injection analysis: Application to nitrite and nitrate 
determination in seawater. Analytical Letters, 46(15), 2345-2358. 

 
36.) Hwang, H., Kim, Y., Cho, J., Lee, J. Y., Choi, M. S., & Cho, Y. K. (2013). Lab-on-a-disc  

for simultaneous determination of nutrients in water. Analytical Chemistry, 85(5), 
2954-2960. 

 
37.) Johnson, K. S., Needoba, J. A., Riser, S. C., & Showers, W. J. (2007). Chemical sensor  

networks for the aquatic environment. Chemical Reviews, 107(2), 623-640. 
 
38.) Kroupova, H., Machova, J., & Svobodova, Z. (2005). Nitrite influence on fish: A review.  

Veterinarni Medicina, 50(11), 461. 
 
39.) Le Bris, N., Sarradin, P. M., Birot, D., & Alayse-Danet, A. M. (2000). A new chemical  

analyzer for in situ measurement of nitrate and total sulfide over hydrothermal 
vent biological communities. Marine Chemistry, 72(1), 1-15.  

 
40.) Legnerová, Z., Solich, P., Sklenářová, H., Šatıńský, D., & Karlıč́ek, R. (2002).  
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2.5.   Appendix B: Supporting figures and tables 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.1a. ELOS reagent + NO2

-  absorbance spectrum. Blank-corrected and tested on a 
Perkin Elmer Lambda 25 spectrophotomer in a 10 cm quartz cuvette.  b. ELOS color card and 
standards.  
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Figure B.2a.  API reagent + NO2

-  absorbance spectrum tested on a Perkin Elmer Lambda 25 
spectrophotomer in a 10 cm quartz cuvette.  b. API reagent + NO2

-  absorbance spectrum blank-
corrected.    
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Protocol Components 
List 

Price 
USD 

Volume 
Supplied 

Volume 
Required 
/ Sample 

Price / 
Sample 

AWWA 
4500-
NO2

- B 

85% phosphoric acid $198.08 1 L 200 µL 

$0.07 sulfanilamide $35.88 100 g 20 mg 
N-(1-naphthyl)-ethylenediamine 
dihydrochloride $132.33 25 g 2 mg 

API API nitrite reagent solution $9.00 37 mL 150 µL $0.05 

Molecular 
Probes 

Molecular Probes nitrite kit 
reagent A $128.00 

25 mL 50 µL / 
10 µL* $0.26 / 

0.05* Molecular Probes nitrite kit 
reagent B 25 mL 50 µL / 

10 µL* 
ELOS ELOS nitrite reagent solution $21.99 20 mL 350 µL $0.40 

Hach Hach nitrite reagent powder $37.39 1 pillow / 
test 

100 
pillows $0.37 

      
    

* = microplate assay 
Table B.1. Reagent comparison – cost per assay. 
 
 
 

 

 

 

 

 

 

 

 

 

 
Figure B.3. Molecular Probes shelf life reagent test results: Average percentage difference in 
signal (absorbance) between fresh and shelved reagents.   
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Figure B.4.  Prototype nitrite analyzer signal output of API reagent and recirculating aquaculture 
system (RAS) tank water across 3 color filter channels (red, green, and blue), and clear 
(unfiltered).  Error bars as 3x standard deviation, n = 40.   

 

 

 

 

 

 

 

 

 
 
Figure B.5.  Prototype nitrite analyzer light readings on a sample plug over varying integration 
times, beginning with 500 milliseconds.   
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Figure B.6a.  Pump calibration at varying speeds over 60 seconds using pulse width modulation 
and b. Pump calibration at constant speed and varying time.  
 
Table B.2.  Example results of pump calibration test using Hall Effect sensor to track 1 pump 
revolution and measurement of corresponding mass difference of Type 1 water drawn.   
 

Before 
(mg) 

After 
(mg) 

Difference 
(mg) 

32.5093 32.4745 0.0348 
32.4747 32.4401 0.0346 
32.4400 32.4051 0.0349 
32.4053 32.3715 0.0338 
32.3716 32.3366 0.0350 
32.3367 32.3019 0.0348 
32.3016 32.2652 0.0364 
32.2652 32.2320 0.0332 
32.2320 32.1932 0.0388 
32.1932 32.1543 0.0389 
32.1545 32.1185 0.0360 

b. 

a. 
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Figure B.7a. Reaction kinetics of Molecular Probes nitrite reagent on prototype nitrite analyzer 
with 20 mm flow-cell over low range standards and b. over high range standards.      
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Figure B.8. Result of red food dye calibration curve on prototype nitrite analyzer.  Standards 
manually pumped through 20 mm flow-cell with syringe.   
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2.6.   Appendix C: Data tables 

 
 

Table C.1. Reagent comparison 

Standard 
(µM) Mean Abs.  +/- Std. 

Dev. 
Ɛ (M-1   
cm-1) λ (nm) b (cm) 

Griess reagent (Standard Method – manual in lab.) 
0.1 0.0407 0.0004 40733 543 10 
0.2 0.0808 0.0003 40383 543 10 
0.3 0.1206 0.0005 40211 543 10 
0.5 0.2015 0.0003 40307 543 10 
1 0.4007 0.0002 40070 543 10 
2 0.8059 0.0005 40297 543 10 
3 1.2017 0.0007 40058 543 10 
5 1.9825 0.0027 39650 543 10 

Molecular Probes nitrite reagent 
0.25 0.0447 0.0004 35787 548 5 
0.5 0.0846 0.0001 33853 548 5 
1 0.1717 0.0002 34340 548 5 
5 0.8579 0.0025 34317 548 5 

10 1.6338 0.0011 32677 548 5 
25 3.1486 0.0010 25189 548 5 

API nitrite reagent 
0.1 0.01630 0.00221 16300 550 10 
0.2 0.02473 0.00145 12367 550 10 
0.3 0.04473 0.00327 14911 550 10 
0.5 0.08197 0.00159 16393 550 10 
1 0.16217 0.00055 16217 550 10 
2 0.37370 0.00151 18685 550 10 
3 0.51607 0.00116 17202 550 10 
5 0.95267 0.00087 19053 550 10 

ELOS nitrite reagent 
0.1 0.35267 0.02898 NA 400 10 
0.2 0.11263 0.00861 NA 400 10 
0.3 0.11813 0.01273 NA 400 10 
0.5 0.25140 0.01571 NA 400 10 
1 0.39070 0.02002 NA 400 10 
2 0.18477 0.00883 NA 530 10 
3 0.37227 0.01128 NA 530 10 
5 1.10113 0.00442 NA 530 10 
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Table C.2. Reagent shelf life test data 
5 cm cuvette 

     
 

548 nm 
      

  
                
Zero week Serial dilution from certified stock solution 

  
   

Abs. 
     

  
Standard (µM) Rep 1 2 3 4 5 

 
  

Reagent Blank 0.0000 0.0000 0.0001 0.0000 0.0001 
 

  
0.25 0.0468 0.0467 0.0468 0.0467 0.0468 

 
  

0.5 0.0842 0.0842 0.0844 0.0843 0.0845 
 

  
1 0.1745 0.1745 0.1744 0.1743 0.1744 

 
  

5 0.8446 0.8449 0.8443 0.8437 0.8437 
 

  
10 1.6447 1.6440 1.6428 1.6438 1.6440 

 
  

25 3.1134 3.1265 3.1435 3.1434 3.1449 
 

  
                

1 week  Serial dilution from 1mM 
working solution  2 weeks Serial dilution from 

1mM working solution  
New reagent abs. New reagent abs. 
Standard (µM) Rep 1 2 3 Standard (µM) Rep 1 2 3 
Reagent Blank 0.0002 0.0002 0.0004 Reagent Blank 0.0000 0.0000 0.0000 
0.25 0.0436 0.0437 0.0435 0.25 0.0447 0.0444 0.0451 
0.5 0.0854 0.0843 0.0844 0.5 0.0845 0.0847 0.0847 
1 0.1720 0.1720 0.1719 1 0.1717 0.1719 0.1715 
5 0.8138 0.8138 0.8141 5 0.8571 0.8607 0.8560 
10 1.5506 1.5514 1.5519 10 1.6330 1.6334 1.6351 
25 3.0729 3.0657 3.0694 25 3.1483 3.1498 3.1478    

  
   

  
1 week 

 
Reagent 1 2 weeks 

 
Reagent 1   

Old reagent abs. Old reagent abs. 
Standard (µM) Rep 1 2 3 Standard (µM) Rep 1 2 3 
Reagent Blank 0.0005 0.0000 0.0000 Reagent Blank 0.0000 0.0000 0.0000 
0.25 0.0436 0.0433 0.0434 0.25 0.0430 0.0430 0.0435 
0.5 0.0861 0.0860 0.0861 0.5 0.0828 0.0828 0.0831 
1 0.1706 0.1707 0.1707 1 0.1700 0.1700 0.1700 
5 0.7999 0.8003 0.8003 5 0.8558 0.8553 0.8551 
10 1.5266 1.5264 1.5272 10 1.6400 1.6403 1.6405 
25 3.0309 3.0461 3.0443 25 3.1662 3.1622 3.1642 
                
 
 
 
 
 

       



www.manaraa.com

 

96 
 

3 weeks Serial dilution from 1mM 
working solution  4 weeks Serial dilution from 

certified stock solution 
New Reagent Abs. New Reagent Abs. 
Standard (µM) Rep 1 2 3 Standard (µM) Rep 1 2 3 
Reagent Blank 0.0000 0.0000 0.0002 Reagent Blank 0.0000 0.0000 0.0000 
0.25 0.0418 0.0420 0.0420 0.25 0.0434 0.0432 0.0433 
0.5 0.0821 0.0809 0.0821 0.5 0.0872 0.0870 0.0872 
1 0.1657 0.1656 0.1654 1 0.1732 0.1732 0.1732 
5 0.8209 0.8208 0.8213 5 0.8094 0.8097 0.8095 
10 1.6013 1.6002 1.6000 10 1.5712 1.5704 1.5715 
25 3.2633 3.2657 3.2666 25 3.0659 3.0856 3.0774 
3 weeks Reagent 1 4 weeks Reagent 1 
Old reagent abs. Old reagent abs. 
Standard (µM) Rep 1 2 3 Standard (µM) Rep 1 2 3 
Reagent Blank 0.0000 0.0004 0.0002 Reagent Blank 0.0010 0.0000 0.0010 
0.25 0.0429 0.0424 0.0420 0.25 0.0389 0.0384 0.0384 
0.5 0.0816 0.0816 0.0816 0.5 0.0788 0.0788 0.0788 
1 0.1661 0.1654 0.1659 1 0.1612 0.1611 0.1612 
5 0.8250 0.8246 0.8246 5 0.7855 0.7854 0.7847 
10 1.5281 1.5281 1.5278 10 1.4628 1.4631 1.4637 
25 3.1924 3.1942 3.1952 25 3.0059 3.0088 3.0157 
        

5 weeks Serial dilution from 1mM 
working solution 7 weeks Serial dilution from 1mM 

working solution 
New Reagent Abs. New Reagent Abs. 
Standard (µM) Rep 1 2 3 Standard (µM) Rep 1 2 3 
Reagent Blank 0.0000 0.0000 0.0000 Reagent Blank 0.0000 0.0000 0.0000 
0.25 0.0438 0.0438 0.0440 0.25 0.0440 0.0440 0.0440 
0.5 0.0874 0.0875 0.0876 0.5 0.0842 0.0842 0.0842 
1 0.1785 0.1793 0.1790 1 0.1641 0.1641 0.1640 
5 0.8497 0.8499 0.8499 5 0.7845 0.7850 0.7855 
10 1.6112 1.6118 1.6116 10 1.5088 1.5091 1.5101 
25 3.1108 3.1437 3.1540 25 3.2141 3.2091 3.2275 
5 weeks Reagent 1 7 weeks Reagent 2 
Old reagent abs.  Old reagent abs. 
Standard (µM) Rep 1 2 3 Standard (µM) Rep 1 2 3 
Reagent Blank 0.0000 0.0000 0.0000 Reagent Blank 0.0000 0.0000 0.0000 
0.25 0.0360 0.0359 0.0360 0.25 0.0396 0.0398 0.0399 
0.5 0.0723 0.0725 0.0725 0.5 0.0750 0.0751 0.0750 
1 0.1451 0.1448 0.1451 1 0.1513 0.1513 0.1507 
5 0.7090 0.7098 0.7096 5 0.7313 0.7307 0.7300 
10 1.3524 1.3522 1.3523 10 1.4050 1.4058 1.4059 
25 2.8877 2.9010 2.9097 25 3.0450 3.0499 3.0513 
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8 weeks Serial dilution from 1mM 
working solution 9 weeks Serial dilution from 1mM 

working solution 
New Reagent Abs. New Reagent Abs. 
Standard (µM) Rep 1 2 3 Standard (µM) Rep 1 2 3 
Reagent Blank 0.0000 0.0000 0.0000 Reagent Blank 0.0002 0.0001 0.0001 
0.25 0.0475 0.0475 0.0476 0.25 0.0446 0.0447 0.0448 
0.5 0.0926 0.0921 0.0922 0.5 0.0882 0.0884 0.0883 
1 0.1832 0.1831 0.1834 1 0.1746 0.1787 0.1752 
5 0.8779 0.8771 0.8770 5 0.8481 0.8480 0.8480 
10 1.6582 1.6581 1.6575 10 1.5962 1.5955 1.5955 
25 3.1259 3.1414 3.1394 25 3.1011 3.1041 3.1002 
8 weeks  Reagent 3 9 weeks  Reagent 3 
Old reagent abs. Old reagent abs. 
Standard (µM) Rep 1 2 3 Standard (µM) Rep 1 2 3 
Reagent Blank 0.0006 0.0003 0.0004 Reagent Blank 0.0000 0.0000 0.0000 
0.25 0.0390 0.0391 0.0392 0.25 0.0332 0.0334 0.0334 
0.5 0.0769 0.0770 0.0769 0.5 0.0715 0.0678 0.0679 
1 0.1568 0.1567 0.1569 1 0.1384 0.1385 0.1387 
5 0.7622 0.7617 0.7616 5 0.6548 0.6545 0.6540 
10 1.4223 1.4204 1.4206 10 1.2613 1.2609 1.2605 
25 2.9509 2.9572 2.9538 25 2.7062 2.7095 2.7102 
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Table C.3. Instrument calibration: Nitrite sensor (2 cm flow-cell)  
Reagent Blank 0.1 

Blank Reading  
 counts 

averaged 

Blank Reading  
 counts 

averaged Counter 
Green 
Ave 

 Grn 
stDev Counter 

Green 
Ave 

 Grn 
stDev 

1 350102.0 347.9 15 1 350540.7 72.8 15 
2 349877.4 58.6 15 2 350696.7 95.3 15 
3 350053.4 35.1 15 3 350990.0 103.1 15 
         

Analyze Blank...  
 counts 

averaged 

Analyze Standard...  
 counts 

averaged Mix Counter 
Green 
Ave 

 Grn 
stDev 

Mix 
Counter 

Green 
Ave 

 Grn 
stDev 

0 348564.7 11944.5 15 0 313683.4 25321.8 15 
1 339658.0 4712.3 15 1 297622.0 9050.4 15 
3 348269.4 1689.4 15 3 325432.0 2412.0 15 
4 351630.7 1838.3 15 4 344252.0 1631.5 15 
5 350041.4 893.6 15 5 348256.0 2029.6 15 
6 349110.0 254.4 15 6 346341.4 1204.1 15 
7 348657.4 168.7 15 7 344710.0 443.5 15 
9 348172.7 171.0 15 9 344017.4 121.9 15 

10 347877.4 159.7 15 10 343732.0 113.6 15 
11 347803.4 118.1 15 11 343374.7 129.0 15 
12 347622.7 198.3 15 12 343408.0 175.1 15 
13 346845.4 201.5 15 14 343026.0 187.1 15 
15 347876.0 153.0 15 15 342617.4 194.0 15 
16 347562.7 166.6 15 16 342790.0 185.5 15 
17 347352.0 160.2 15 17 342526.0 128.7 15 
18 347562.7 108.8 15 18 342244.0 122.8 15 
         

Read 1 347586.7 175.1 15 Read 1 342458.0 120.7 15 
Read 2 347413.4 180.1 15 Read 2 342474.0 146.1 15 
Read 3 347469.4 139.1 15 Read 3 342214.7 141.3 15 
Read 4 347512.0 148.0 15 Read 4 341971.4 110.1 15 
Read 5 347338.7 108.9 15 Read 5 342102.7 109.7 15 
Read 6 347466.7 140.3 15 Read 6 342104.0 72.3 15 
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0.2 0.3 
Blank Reading  

 counts 
averaged 

Blank Reading  
 counts 

averaged Counter 
Green 
Ave 

 Grn 
stDev Counter 

Green 
Ave 

 Grn 
stDev 

1 348322.7 282.1 15 1 349526.7 246.2 15 
2 347855.4 121.7 15 2 349300.7 53.0 15 
3 347869.4 80.8 15 3 349401.4 66.5 15 

Analyze Standard...  
 counts 

averaged 

Analyze Standard...  
 counts 

averaged Mix Counter 
Green 
Ave 

 Grn 
stDev 

Mix  
Counter 

Green 
Ave 

 Grn 
stDev 

0 314622.7 29968.6 15 0 316977.4 40557.6 15 
1 286137.4 9673.2 15 1 285792.0 10436.7 15 
3 320733.4 1949.2 15 3 311249.4 4032.2 15 
4 339432.0 1623.0 15 4 330558.7 1611.9 15 
5 342307.4 2008.3 15 5 340710.7 2007.6 15 
6 339824.7 1183.3 15 6 338746.0 1479.3 15 
7 338104.0 571.2 15 7 336371.4 766.1 15 
9 336781.4 172.1 15 9 334942.0 301.3 15 

10 336026.0 119.9 15 10 333648.0 178.6 15 
11 335466.7 98.5 15 11 333517.4 87.4 15 
12 334832.0 96.8 15 12 332756.0 110.0 15 
13 334830.0 95.4 15 13 332529.4 102.7 15 
15 334565.4 70.7 15 15 332315.4 82.9 15 
16 334212.7 62.4 15 16 332181.4 94.6 15 
17 334209.4 65.5 15 17 332028.7 136.1 15 
18 334038.7 69.9 15 18 331416.0 119.5 15 
    19 331317.4 77.2 15 

        
Read 1 333842.0 63.0 15 Read 1 331148.0 64.7 15 
Read 2 333794.0 56.7 15 Read 2 331036.7 251.7 15 
Read 3 333456.7 65.6 15 Read 3 331010.7 95.5 15 
Read 4 333333.4 88.7 15 Read 4 331063.4 83.2 15 
Read 5 333192.0 78.2 15 Read 5 331006.0 77.8 15 
Read 6 333024.7 39.5 15 Read 6 331139.4 93.6 15 
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0.5 1.0 

Blank Reading  
 counts 

averaged 

Blank Reading  
 counts 

averaged Counter 
Green 
Ave 

 Grn 
stDev Counter 

Green 
Ave 

 Grn 
stDev 

1 348895.4 391.4 15 1 349161.4 423.7 15 
2 348260.0 61.3 15 2 348620.0 47.2 15 
3 348323.4 76.1 15 3 348704.7 57.4 15 

Analyze Standard...  
 counts 

averaged 

Analyze Standard...  
 counts 

averaged Mix Counter 
Green 
Ave 

 Grn 
stDev 

Mix  
Counter 

Green 
Ave 

 Grn 
stDev 

0 319068.0 38199.3 15 0 294144.0 35058.3 15 
1 264342.0 9081.3 15 1 280077.4 9127.2 15 
3 303494.7 3685.0 15 3 305476.7 2935.4 15 
4 324602.0 1348.4 15 4 319656.0 2192.4 15 
5 334306.7 2115.7 15 5 318817.4 2329.5 15 
6 331470.7 1621.6 15 6 313563.4 1068.0 15 
7 328456.7 696.7 15 7 310309.4 685.1 15 
9 326394.0 240.7 15 9 307731.4 266.2 15 

10 325207.4 175.6 15 10 306313.4 114.1 15 
11 324630.0 65.7 15 11 305504.0 54.4 15 
12 324062.0 113.6 15 12 304787.4 125.9 15 
13 323751.4 84.8 15 13 304317.4 209.6 15 
15 323678.7 129.8 15 15 304010.0 59.6 15 
16 323362.7 110.2 15 16 303879.4 58.0 15 
17 323504.7 107.4 15 17 303702.7 51.6 15 
18 323664.7 184.0 15 18 303634.7 67.3 15 
19 323619.4 137.2 15 19 303418.0 94.0 15 
        

Read 1 323700.7 160.4 15 Read 1 303471.4 92.7 15 
Read 2 323524.0 466.6 15 Read 2 303380.0 66.6 15 
Read 3 323675.4 117.1 15 Read 3 303332.0 67.6 15 
Read 4 323547.4 136.9 15 Read 4 303261.4 70.4 15 
Read 5 323326.0 180.8 15 Read 5 303238.0 37.3 15 
Read 6 323218.0 130.0 15 Read 6 303298.7 77.3 15 
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5.0 10.0 

Blank Reading  
 counts 

averaged 

Blank Reading  
 counts 

averaged Counter 
Green 
Ave 

 Grn 
stDev Counter 

Green 
Ave 

 Grn 
stDev 

1 347998.0 408.4 15.0 1 349097.4 256.6 15 
2 347454.0 50.7 15.0 2 349082.0 147.8 15 
3 347346.7 38.1 15.0 3 349316.7 87.1 15 

Analyze Standard...  
 counts 

averaged 

Analyze Standard...  
 counts 

averaged Mix Counter 
Green 
Ave 

 Grn 
stDev 

Mix  
Counter 

Green 
Ave 

 Grn 
stDev 

0 285265.4 33056.6 15 0 275126.7 37315.9 15 
1 241840.7 14023.2 15 1 262813.4 21773.3 15 
3 249705.3 7599.5 15 3 205480.0 11766.2 15 
4 240856.7 5117.9 15 4 176183.3 8317.5 15 
5 227441.3 3661.1 15 5 152176.0 5021.5 15 
6 214091.3 2089.7 15 6 134317.3 2515.0 15 
7 203932.0 1038.6 15 7 122468.7 1298.0 15 
9 197638.7 532.6 15 8 114644.7 717.9 15 

10 193352.0 272.2 15 10 109640.0 384.6 15 
11 190839.3 133.0 15 11 106276.7 219.8 15 
12 189102.0 79.6 15 12 103976.0 129.6 15 
13 187910.7 78.7 15 13 102490.7 81.5 15 
15 187203.3 24.4 15 14 101498.7 44.1 15 
16 186770.7 37.5 15 15 100880.7 26.4 15 
17 186445.3 58.2 15 17 100428.7 29.9 15 
18 186182.7 35.1 15 18 100128.0 25.6 15 
19 186049.3 50.4 15 19 99943.3 31.1 15 
        

Read 1 185961.3 40.5 15.0 Read 1 99812.0 27.4 15 
Read 2 185837.3 59.5 15.0 Read 2 99736.7 23.0 15 
Read 3 185745.3 36.1 15.0 Read 3 99688.0 25.6 15 
Read 4 185760.0 39.2 15.0 Read 4 99638.0 27.4 15 
Read 5 185660.7 36.0 15.0 Read 5 99601.3 39.3 15 
Read 6 185689.3 34.1 15.0 Read 6 99598.0 27.4 15 
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25.0     

Blank Reading  
 counts 

averaged 

    

Counter 
Green 
Ave 

 Grn 
stDev     

1 346366.7 520.5 15     
1 345760.7 83.6 15     
2 345752.7 70.0 15     
3 345972.7 140.3 15     

Analyze Standard...  
 counts 

averaged 

    

Mix Counter 
Green 
Ave 

 Grn 
stDev     

0 263183.4 46562.6 15     
1 193438.7 30474.9 15     
3 113922.7 16407.1 15     
4 73885.3 8387.9 15     
5 50752.0 3649.8 15     
6 37283.3 1592.8 15     
7 29431.3 753.2 15     
9 24586.7 402.9 15     

10 21558.7 230.7 15     
11 19595.3 143.7 15     
12 18258.0 88.2 15     
13 17368.0 59.6 15     
15 16765.3 38.3 15     
16 16349.3 24.1 15     
17 16057.3 14.4 15     
18 15848.0 11.7 15     
19 15701.3 6.2 15     
        

Read 1 15626.0 8.0      
Read 2 15564.7 6.2      
Read 3 15522.0 5.4      
Read 4 15482.0 6.5      
Read 5 15461.3 7.2      
Read 6 15438.0 7.5      
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Table C.4. Instrument precision: Nitrite sensor (2 cm flow-cell)   

        
Conc. 
(uM) Replicate Avg. Blank 

Read (n=3) 
Stdev. Blank 
Read (n=3) 

Avg. Blank 
Read (n=6) 

Stdev. Blank 
Read (n=6) 

0.00 1 353094.2 387.8 349154.1 569.4 
0.00 2 352739.6 348.7 350783.6 133.5 
0.00 3 354442.5 437.3 350766.9 169.4 
0.00 4 355861.4 498.2 350892.4 108.2 
0.00 5 356672.5 300.0 351082.9 131.9 
0.25 1 354010.7 264.0 341165.9 192.9 
0.25 2 355438.2 537.5 341412.2 203.4 
0.25 3 355990.2 438.8 341249.6 199.7 
0.25 4 355901.8 443.7 341536.6 263.7 
0.25 5 356059.8 386.8 341590.7 340.9 
0.50 1 352675.1 318.1 331126.6 269.4 
0.50 2 355433.6 335.5 331382.1 406.0 
0.50 3 355891.8 283.2 332423.6 571.4 
0.50 4 356415.4 319.2 332328.1 444.1 
0.50 5 357852.0 423.6 332416.7 141.2 
1.00 1 361716.3 312.8 315403.1 425.0 
1.00 2 359395.2 332.1 315115.2 678.5 
1.00 3 360333.8 250.8 315120.3 641.0 
1.00 4 360997.8 215.8 315302.2 544.4 
1.00 5 355961.4 217.7 312705.7 386.0 
5.00 1 358082.7 371.6 192240.3 1149.4 
5.00 2 358662.3 305.3 191072.8 1453.8 
5.00 3 357531.8 259.1 190635.6 2502.0 
5.00 4 358156.2 320.2 190573.0 1189.9 
5.00 5 359373.6 370.7 191749.2 822.9 
10.00 1 362864.9 462.8 104808.2 1062.4 
10.00 2 360566.9 310.2 103241.5 2212.7 
10.00 3 361843.4 418.4 103302.3 2104.2 
10.00 4 362032.7 403.4 103230.9 1410.6 
10.00 5 361952.5 157.8 105148.8 649.5 
25.00 1 359575.8 343.8 17592.1 860.6 
25.00 2 361571.2 428.0 16968.2 458.0 
25.00 3 360532.3 273.5 17718.2 1145.1 
25.00 4 360383.2 300.0 17432.6 778.5 
25.00 5 361024.2 576.6 17100.9 781.2 
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Table C.5. Instrument comparison: Perkin Elmer spectrophotometer (2 cm cuvette) 
 

Sample (µM)  Absorbance 
(AU) Sample (µM) Absorbance 

(AU) 
0.25 0.0162 RAS 45 min* 0.0238 
0.25 0.0163 RAS 45 min* 0.0238 
0.25 0.0163 RAS 45 min* 0.0238 
0.25 0.0163 RAS 45 min* 0.0238 
0.25 0.0164 RAS 45 min* 0.0238 
0.5 0.0343 RAS 165 min** 0.1168 
0.5 0.0343 RAS 165 min** 0.1166 
0.5 0.0343 RAS 165 min** 0.1165 
0.5 0.0343 RAS 165 min** 0.1167 
0.5 0.0344 RAS 165 min** 0.1170 
1 0.0673 Blank 0.0000 
1 0.0674   
1 0.0673 RAS Pre 0.0296 
1 0.0674 RAS Pre 0.0295 
1 0.0674 RAS Pre 0.0296 

Blank 0.0000 RAS Pre 0.0296 
5 0.3117 RAS Pre 0.0294 
5 0.3118   
5 0.3118 *1:100 dilution  
5 0.3122 **1:10 dilution  
5 0.3120   
10 0.6218   
10 0.6219   
10 0.6220   
10 0.6220   
10 0.6219   
25 1.3207   
25 1.3214   
25 1.3213   
25 1.3209   
25 1.3208   

Blank 0.0000   
Blank 0.0000   
Blank 0.0000   
Blank 0.0000   
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Table C.6. Instrument comparison: SEAL AA3 (1 cm pathlength) 

Sample (µM) Absorbance 
(mAU) 

Value 
(corrected) Sample (µM)   Absorbance 

(mAU) 
Value 

(corrected) 

Baseline 0.00 0.027 10.00 183.72 9.167 
Primer 495.95 24.912 10.00 183.40 9.149 
Drift 494.80 24.831 10.00 184.22 9.188 

25.00 std. 498.59 25.016 10.00 183.22 9.136 
10.00 std. 199.07 9.988 1.00 std. 20.26 1.009 
5.00 std. 98.13 4.937 25.00 455.83 22.73 
1.00 std. 19.88 1.017 25.00 459.12 22.871 
0.50 std. 9.52 0.5 25.00 457.17 22.768 
0.25 std. 4.91 0.269 25.00 458.18 22.813 
0.00 std. -0.01 0.022 25.00 457.29 22.765 

High 497.52 24.953 Blank 1.41 0.053 
Low  5.55 0.276 RAS 4/3 37.94 1.893 
Low  5.09 0.277 RAS 165 min**  28.84 1.437 

Blank 0.27 0.034 RAS  45 min* 5.71 0.286 
0.25 4.65 0.253 Diluted Sample 498.81 24.831 
0.25 4.72 0.256 Final Base 0.00 0.027 
0.25 4.70 0.255    
0.25 4.64 0.251    
0.25 4.71 0.254 *1:100 dilution   
0.50 9.12 0.474 **1:10 dilution   
0.50 9.28 0.481    
0.50 9.20 0.477    
0.50 9.17 0.475    
0.50 9.28 0.479    
1.00 18.39 0.934    
1.00 18.20 0.924    
1.00 18.35 0.93    
1.00 18.41 0.933    
1.00 18.44 0.934    

0.50 std. 9.88 0.505    
5.00 91.59 4.586    
5.00 91.28 4.565    
5.00 91.72 4.586    
5.00 91.29 4.563    
5.00 91.27 4.561    
0.00 183.28 9.151    
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Table C.7. Instrument comparison: Nitrite sensor (2 cm flow-cell)  
Reagent Blank 0.25 

Blank Reading  
 counts 

averaged 

Blank Reading  
 counts 

averaged Counter 
Green 
Ave 

 Grn 
stDev Counter 

Green 
Ave 

 Grn 
stDev 

1 358644.7 562.6 15 1 360638.0 149.6 15 
1 358231.4 104.7 15 2 360416.0 111.5 15 
2 358548.7 96.6 15 3 360425.4 72.7 15 
3 358887.4 84.4 15      

Analyze Blank...  
 counts 

averaged 

Analyze Standard...  
 counts 

averaged Mix Counter 
Green 
Ave 

 Grn 
stDev 

Mix 
Counter 

Green 
Ave 

 Grn 
stDev 

0 358557.4 27062.6 15 0 345310.7 28335.0 15 
2 304376.0 8028.5 15 1 354219.4 8470.9 15 
3 341765.4 1827.7 15 3 351177.4 2928.2 15 
4 360223.4 1390.3 15 4 356615.4 1873.1 15 
5 360154.0 1252.7 15 5 356022.0 1142.6 15 
6 359594.7 705.5 15 6 354795.4 642.8 15 
8 359281.4 307.9 15 8 353274.7 284.7 15 
9 358986.7 135.9 15 9 352161.4 132.9 15 

10 358739.4 147.5 15 10 351172.0 88.6 15 
11 358616.7 147.9 15 11 350284.7 79.8 15 
13 358203.4 94.1 15 12 349578.7 124.6 15 
14 358245.4 111.1 15 14 348916.7 106.2 15 
15 358152.0 117.1 15 15 348603.4 143.8 15 
16 357885.4 125.9 15 16 348210.7 160.6 15 
17 357972.0 89.7 15 17 347819.4 82.2 15 
19 358019.4 130.9 15 19 347430.7 95.7 15 
         

Read 1 357717.4 71.2 15 Read 1 347188.7 75.1 15 
Read 2 357440.7 87.3 15 Read 2 347091.4 103.8 15 
Read 3 357332.0 135.3 15 Read 3 346938.0 93.1 15 
Read 4 357313.4 193.2 15 Read 4 346818.0 104.9 15 
Read 5 356965.4 79.9 15 Read 5 346639.4 77.7 15 
Read 6 356738.0 49.4 15 Read 6 346636.0 75.3 15 
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0.50 1.00 

Blank Reading  
 counts 

averaged 

Blank Reading  
 counts 

averaged Counter 
Green 
Ave 

 Grn 
stDev Counter 

Green 
Ave 

 Grn 
stDev 

1 360629.4 235.4 15 1 360774.0 140.2 15 
2 360001.4 122.7 15 2 360424.7 53.7 15 
3 359766.0 99.0 15 3 360591.4 58.3 15 

Analyze Standard...  
 counts 

averaged 

Analyze Standard...  
 counts 

averaged Mix Counter 
Green 
Ave 

 Grn 
stDev 

Mix  
Counter 

Green 
Ave 

 Grn 
stDev 

0 360891.4 14622.4 15 0 339124.0 23179.1 15 
1 356358.7 11118.4 15 1 349324.7 9070.6 15 
3 349575.4 2753.6 15 3 343930.0 2796.3 15 
4 353336.0 2006.5 15 4 342601.4 2424.5 15 
5 350703.4 1369.2 15 5 337818.0 1676.5 15 
6 348484.7 827.7 15 6 332904.7 971.9 15 
8 346077.4 435.1 15 7 329133.4 466.5 15 
9 344163.4 139.1 15 9 326264.7 266.5 15 

10 342587.4 69.1 15 10 323576.0 170.6 15 
11 341307.4 94.7 15 11 321818.7 80.5 15 
12 340436.7 65.7 15 12 320467.4 85.3 15 
14 339538.0 61.4 15 14 319190.0 49.3 15 
15 338811.4 85.0 15 15 318194.0 80.2 15 
16 338326.7 65.3 15 16 317410.0 53.9 15 
17 337721.4 78.2 15 17 316664.7 111.6 15 
18 337276.7 110.3 15 18 316086.0 49.6 15 
     19 315624.0 72.9 15 

         
Read 1 337168.0 91.1 15 Read 1 315445.4 47.2 15 
Read 2 336753.4 119.9 15 Read 2 315335.4 43.5 15 
Read 3 336413.4 66.9 15 Read 3 315076.7 55.2 15 
Read 4 336161.4 72.7 15 Read 4 314712.7 87.7 15 
Read 5 335843.4 69.3 15 Read 5 314624.7 65.3 15 
Read 6 335606.0 73.4 15 Read 6 314470.0 84.5 15 
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5.00 10.00 

Blank Reading  
 counts 

averaged 

Blank Reading  
 counts 

averaged Counter 
Green 
Ave 

 Grn 
stDev Counter 

Green 
Ave 

 Grn 
stDev 

1 360772.0 114.6 15 1 362862.0 240.1 15 
2 360637.4 65.0 15 2 362457.4 108.0 15 
3 360774.0 117.2 15 3 362152.0 90.7 15 

Analyze Standard...  
 counts 

averaged 

Analyze Standard...  
 counts 

averaged Mix Counter 
Green 
Ave 

 Grn 
stDev 

Mix  
Counter 

Green 
Ave 

 Grn 
stDev 

0 327764.7 45255.9 15 0 327928.7 34439.0 15 
1 315180.7 20716.3 15 1 267945.4 10066.3 15 
3 292713.4 6328.1 15 3 249413.3 11219.9 15 
4 281653.4 5967.3 15 4 221911.3 9753.4 15 
5 261337.3 4349.7 15 5 190505.3 5328.5 15 
6 244714.7 2634.8 15 6 169107.3 3216.2 15 
7 231539.3 1507.4 15 7 151976.0 1866.9 15 
9 221494.7 887.8 15 9 138900.7 1094.5 15 

10 214325.3 586.4 15 10 129633.3 727.1 15 
11 208680.7 403.4 15 11 122492.0 503.0 15 
12 204417.3 279.2 15 12 117100.7 371.2 15 
13 201286.0 203.2 15 13 112966.7 283.4 15 
15 198946.7 167.6 15 15 109904.7 203.7 15 
16 197211.3 105.6 15 16 107391.3 162.1 15 
17 195876.7 132.2 15 17 105550.0 119.0 15 
18 194973.3 35.0 15 18 104116.0 102.6 15 
19 194300.0 45.5 15 19 102920.0 117.5 15 
         

Read 1 193666.0 90.0 15 Read 1 101990.0 133.2 15 
Read 2 193286.0 37.2 15 Read 2 101320.7 41.2 15 
Read 3 193016.7 53.5 15 Read 3 100816.7 36.3 15 
Read 4 192773.3 83.8 15 Read 4 100394.7 36.7 15 
Read 5 192578.7 92.9 15 Read 5 100082.0 25.1 15 
Read 6 192393.3 67.6 15 Read 6 99843.3 30.0 15 
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25.00     

Blank Reading  
 counts 

averaged 

    

Counter 
Green 
Ave 

 Grn 
stDev     

1 362780.0 159.0 15     
2 362402.0 86.6 15     
3 362204.0 57.0 15     

Analyze Standard...  
 counts 

averaged 

    

Mix Counter 
Green 
Ave 

 Grn 
stDev     

0 312135.4 35826.0 15     
1 194530.0 18843.0 15     
3 155922.7 15965.0 15     
4 111059.3 9449.4 15     
5 80874.0 4761.9 15     
6 60959.3 2357.8 15     
7 47735.3 1257.1 15     
9 38716.7 736.5 15     

10 32613.3 463.3 15     
11 28236.7 310.2 15     
12 25118.0 217.5 15     
13 22822.7 157.5 15     
15 21118.7 116.4 15     
16 19829.3 86.6 15     
17 18856.7 65.3 15     
18 18105.3 48.3 15     
19 17532.7 37.7 15     
        

Read 1 17093.3 23.9 15     
Read 2 16740.0 17.9 15     
Read 3 16454.0 14.5 15     
Read 4 16222.0 11.7 15     
Read 5 16035.3 8.1 15     
Read 6 15908.0 8.3 15     
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Table C.8. Instrument comparison: Nitrite sensor (5 cm flow-cell)   

Sample 1 RAS 4/3 Pre-Backflush  Sample 2 RAS 4/2 45 min (1:100 dilution) 
Blank Reading   

counts 
averaged 

Blank Reading  
counts 

averaged Counter 
Green 
Ave 

 Grn 
stDev Counter 

Green 
Ave 

Grn 
stDev 

1 7513.2 15.4 15 1 8006.0 2.0 2 
2 7536.1 7.5 15 2 7997.2 6.2 15 
3 7548.0 7.2 11 3 7996.8 29.8 15 

Analyze Standard... 
counts 

averaged 

Analyze Standard...  
counts 

averaged Mix Counter 
Green 
Ave 

 Grn 
stDev 

Mix 
Counter 

Green 
Ave 

Grn 
stDev 

0 8094.0 1941.4 15 0 8489.7 1117.4 15 
1 7445.7 389.8 15 1 7934.8 501.3 15 
3 6714.5 106.0 15 2 7579.6 177.6 15 
4 6466.4 33.2 15 3 7560.7 73.9 15 
5 6274.8 13.4 15 5 7593.5 37.1 15 
6 6110.7 9.2 15 6 7569.1 19.3 15 
7 5986.7 10.8 15 7 7527.5 6.1 15 
9 5891.5 35.2 15 8 7492.9 6 15 

10 5833.6 6.0 15 9 7462 5.9 15 
11 5754.7 6.4 15 10 7423.1 6.9 15 
12 5760.3 5.9 15 11 7392 7.7 15 
13 5735.1 4.1 15 12 7369.2 11.5 15 
15 5715.9 4.5 15 13 7349.6 7.8 15 
16 5705.1 4.1 15 14 7334.8 8.7 15 
17 5697.2 5.3 15 16 7322 8.1 15 
18 5687.6 3.5 15 17 7309.9 5 15 
19 5680.9 3.4 14 18 7300.3 5.7 15 
    19 7288.3 10.1 15 
        

Read 1 5674.8 7.9 15 Read 1 7278.3 4.5 15 
Read 2 5671.3 6.1 14 Read 2 7257.9 4.6 15 
Read 3 5669.2 4.8 15 Read 3 7254.8 4.9 15 
Read 4 5661.2 7.4 15 Read 4 7254 5.7 15 
Read 5 5662.8 4.9 15 Read 5 7255.7 5.6 15 
Read 6 5652.8 15.4 15 Read 6 7252.4 6.7 15 
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Sample 3 RAS 4/2 165 min (1:100 dilution)     

Blank Reading  
counts 

averaged 

    

Counter 
Green 
Ave 

 Grn 
stDev     

1 7894.8 205.5 15     
2 7955.9 8.5 15     
3 7944.4 23.1 5     

Analyze Standard...  
counts 

averaged 

    

Mix Counter 
Green 
Ave 

 Grn 
stDev     

0 8006.5 1835.7 15     
1 8804.3 955.5 15     
2 7564.3 289.0 15     
3 7540.1 127.3 15     
5 7624.3 61.5 15     
6 7596.7 35.8 15     
7 7597.3 6.5 15     
8 7568.4 6.9 15     
9 7550.1 7.1 15     

10 7537.9 8.8 15     
11 7526.4 5.3 15     
12 7524.4 5.9 15     
13 7519.7 5.1 15     
14 7512.0 6.4 15     
16 7507.9 5.9 15     
17 7508.7 4.5 15     
18 7508.3 4.0 15     
19 7503.6 4.5 15     
        

Read 1 7502.1 3.3 15     
Read 2 7497.2 5.9 15     
Read 3 7497.9 4.9 15     
Read 4 7497.3 3.4 15     
Read 5 7500.8 3.6 15     
Read 6 7499.7 5.5 15     
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Table C.9. Nitrite sensor (5 cm flow-cell): Data for global calibration curve 

Conc. (μM) %T A RAS samples %T A 
0 98.59159 0.00616 Pre-Backflush 75.21275 0.12371 
0 97.89533 0.00924 45 min (1:100) 90.73563 0.04222 
0 97.94289 0.00903 165 min (1:100) 94.32736 0.02536 
0 97.22191 0.01224    
0 98.44016 0.00683    
0 97.36631 0.01159    
0 98.10985 0.00829    
0 97.49212 0.01103    
0 98.03611 0.00861    
0 96.59870 0.01503    
0 97.19987 0.01233    

0.1 96.15615 0.01702    
0.1 95.79930 0.01864    
0.1 97.90932 0.00918    
0.1 97.58866 0.01060    
0.1 95.19587 0.02138    
0.1 95.30764 0.02087    
0.1 95.42268 0.02035    
0.2 93.31120 0.03007    
0.2 93.91722 0.02725    
0.2 93.71753 0.02818    
0.2 93.50179 0.02918    
0.2 92.35960 0.03452    
0.3 91.24171 0.03981    
0.3 91.66231 0.03781    
0.3 90.07578 0.04539    
0.3 91.05590 0.04069    
0.3 89.79870 0.04673    
0.5 87.34428 0.05877    
0.5 87.60534 0.05747    
0.5 86.40342 0.06347    
0.5 86.00934 0.06545    
0.5 84.08935 0.07526    
1 72.46048 0.13990    
2 54.92637 0.26022    
2 54.26267 0.26550    
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Table C.10. Nitrite sensor (2 cm flow-cell): Data for global calibration curve 
Conc. (µM) A Conc. (µM) A Conc. (µM) A 

0.00 0.00487 0.30 0.02215 5.00 0.27349 
0.00 0.00241 0.50 0.02738 5.00 0.27311 
0.00 0.00453 0.50 0.03265 5.00 0.27401 
0.00 0.00611 0.50 0.03276 5.00 0.27281 
0.00 0.00686 0.50 0.03232 10.00 0.53935 
0.00 0.00158 0.50 0.02944 10.00 0.52614 
0.00 0.00631 0.50 0.02822 10.00 0.54527 
0.00 0.00598 0.50 0.02819 10.00 0.54443 
0.00 0.00317 0.50 0.02962 10.00 0.55587 
0.00 0.00806 0.50 0.03043 10.00 0.54313 
0.00 0.00872 0.50 0.02963 10.00 0.54441 
0.00 0.00521 0.50 0.03039 10.00 0.54494 
0.00 0.01020 0.50 0.03202 10.00 0.53685 
0.00 0.00467 1.00 0.05422 15.00 0.77477 
0.00 0.00580 1.00 0.05680 15.00 0.87921 
0.00 0.00606 1.00 0.06070 15.00 0.81451 
0.00 0.00586 1.00 0.05868 25.00 1.31047 
0.00 0.00751 1.00 0.05328 25.00 1.32856 
0.00 0.00139 1.00 0.05520 25.00 1.30852 
0.10 0.00846 1.00 0.05106 25.00 1.31540 
0.10 0.00946 1.00 0.05950 25.00 1.32452 
0.10 0.01068 1.00 0.05710 25.00 1.27585 
0.10 0.01329 1.00 0.05823 25.00 1.27104 
0.20 0.01858 1.00 0.05878 25.00 1.38519 
0.20 0.01205 1.00 0.05627 25.00 1.38256 
0.20 0.01539 1.00 0.05950 25.00 1.34876 
0.25 0.01670 1.00 0.05710 25.00 1.34809 
0.25 0.01768 1.00 0.05823 
0.25 0.01394 1.00 0.05878 
0.25 0.01454 1.00 0.05627 
0.25 0.01922 1.00 0.05807 
0.25 0.01970 1.00 0.05978 
0.25 0.01605 1.00 0.05958 
0.25 0.01749 1.00 0.06145 
0.25 0.01837 5.00 0.26408 
0.25 0.01789 5.00 0.26118 
0.25 0.01802 5.00 0.27209 
0.30 0.02342 5.00 0.27014 
0.30 0.01909 5.00 0.27170 
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2.7.   Appendix D: Analytical equations 
 
Equation: Linear calibration curve 

𝑆𝑆 = 𝑚𝑚𝑚𝑚 + 𝑏𝑏  
Where:  
𝑆𝑆   =   output signal 
𝑚𝑚   =   analyte concentration 
𝑚𝑚   =   slope of regression line 
𝑏𝑏   =    signal intercept of regression line 
 
Equation: Residual standard deviation (random errors in the y direction) 
 

𝑠𝑠(𝑟𝑟) = �
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
𝑛𝑛 − 2  

 
Equation: Standard deviation of the slope 

𝑠𝑠(𝑚𝑚) =
𝑠𝑠(𝑟𝑟)

�∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝑖𝑖
 

 
Equation: Prediction interval for predicted values 
 

𝑠𝑠𝑥𝑥0 =
𝑠𝑠(𝑟𝑟)
𝑚𝑚 �

1
𝑁𝑁 +

1
𝑛𝑛 +

(𝑦𝑦�𝑜𝑜 − 𝑦𝑦�)2

𝑚𝑚2 ∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝑛𝑛
𝑖𝑖=1

 

Where:  
𝑠𝑠(𝑟𝑟) =  residual standard deviation 
𝑥𝑥𝑖𝑖    =  value on the x-axis (concentration) 
�̅�𝑥    =   mean of the x values  
𝑦𝑦𝑖𝑖    =   observed value of y  
𝑦𝑦�𝑖𝑖   =   predicted value of y  
𝑦𝑦�𝑜𝑜  =  mean signal value of N replicate measurements  
𝑛𝑛    =   number of calibration points  
𝑁𝑁   =   number of replicate measurements  
𝑚𝑚   =   slope 
 
Equation: Sensitivity as detection limit 

𝑆𝑆 =
3𝑠𝑠𝑥𝑥
𝑚𝑚  

 
Equation: Recovery  

%𝑅𝑅 =
𝐹𝐹 − 𝐼𝐼
𝐼𝐼 × 100 

Where:  
𝐹𝐹   =  method blank signal  
𝐼𝐼   =   method blank signal after spiked sample run   
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